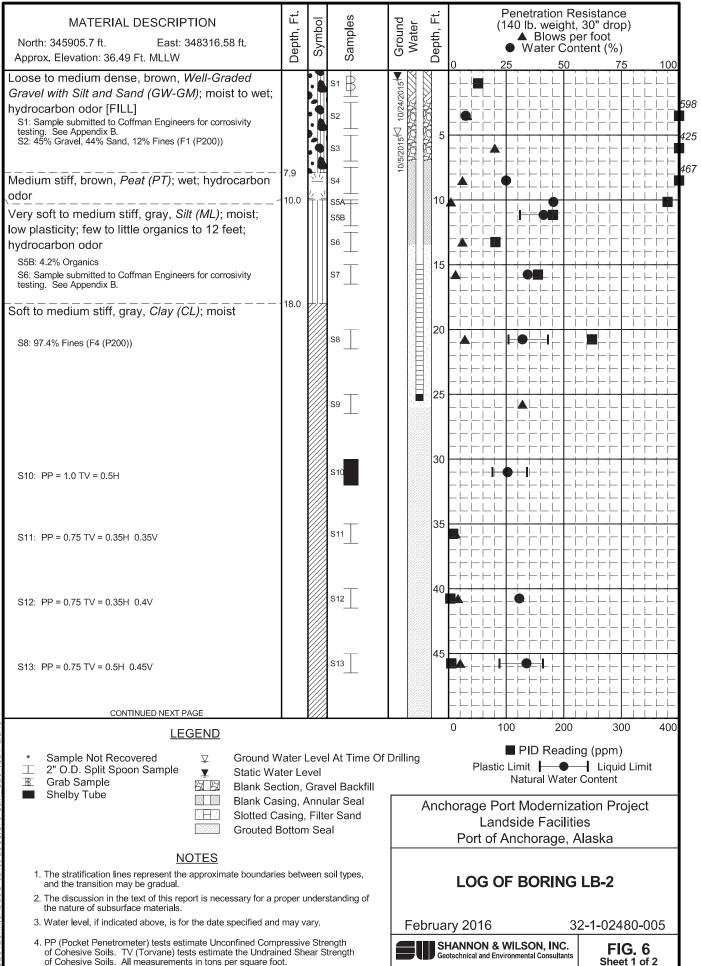
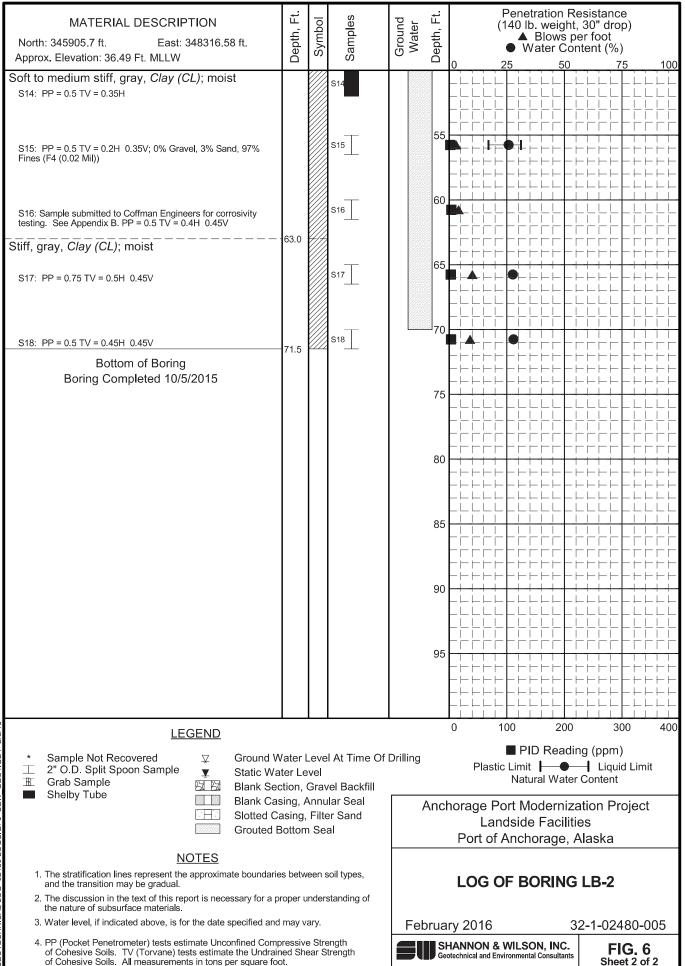
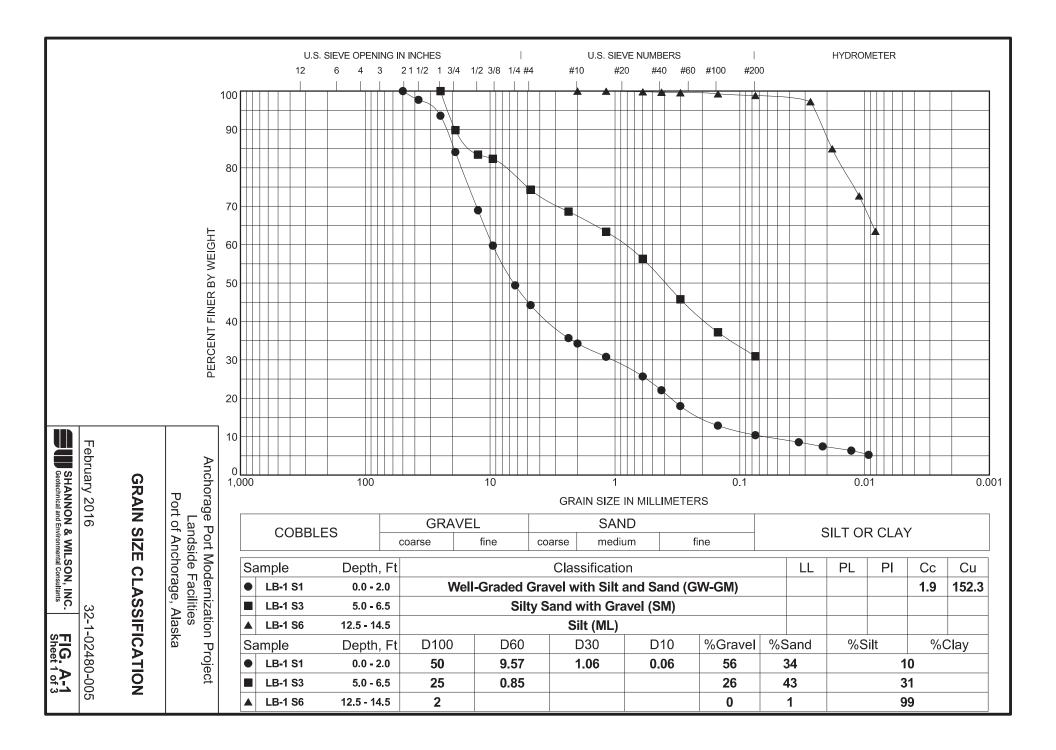


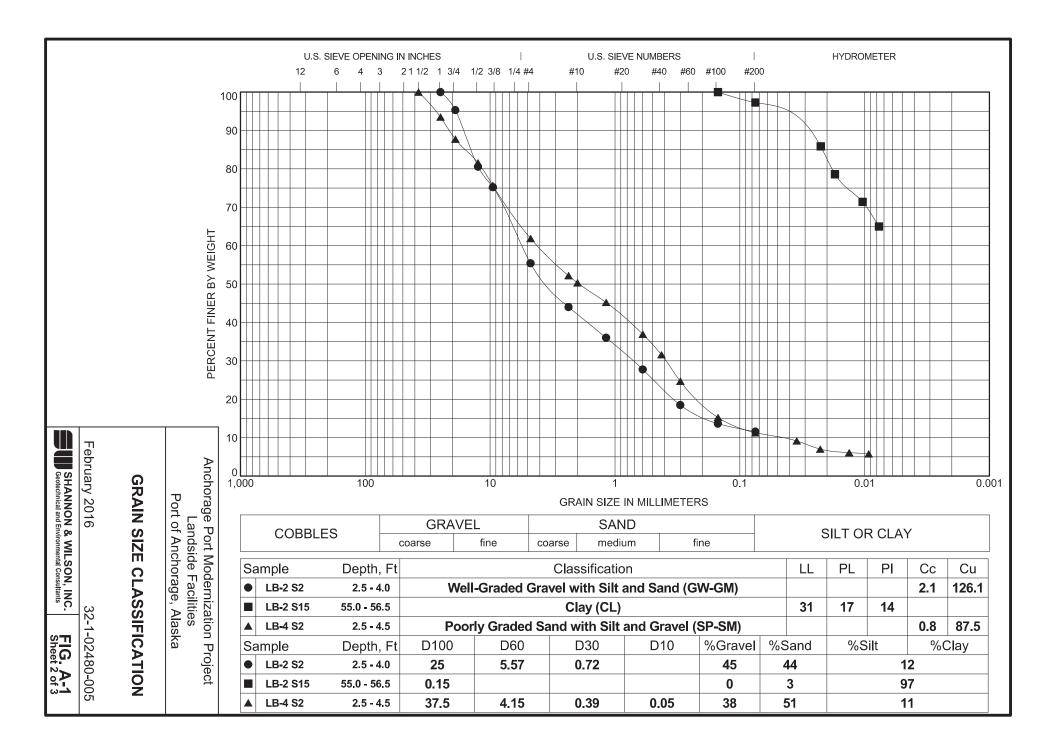
MW−2R ⊕

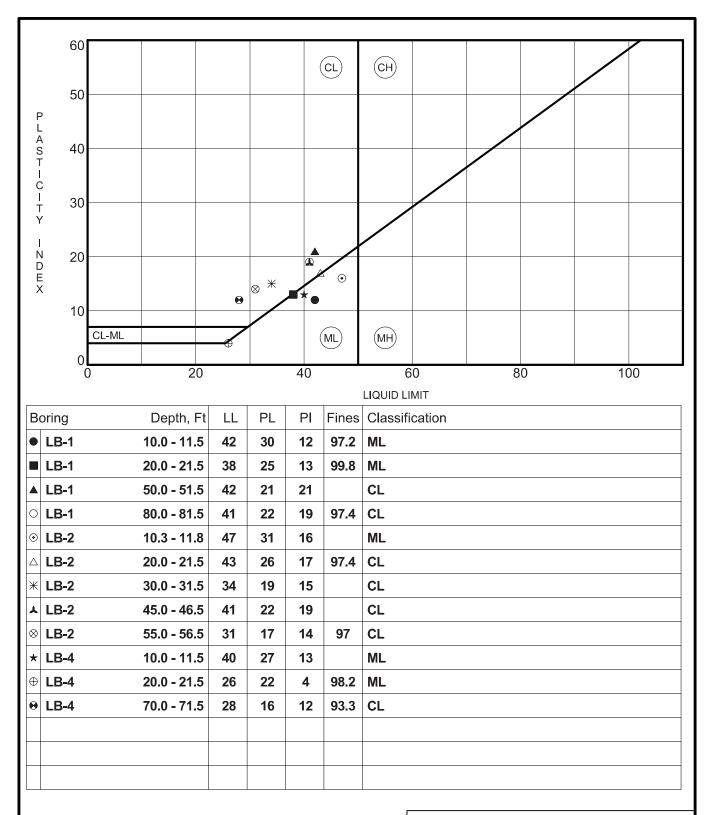


GEO1 S&W OGS.GPJ 02480




SEOTECHNICAL LOG 02480 LOGS GPJ S&W GEO1 GDT


2/8/16



0/8/1G

Anchorage Port Modernization Project Landside Facilities Port of Anchorage, Alaska

ATTERBERG LIMITS RESULTS

32-1-02480-005

Geotechnical and Environmental Consultants

February 2016

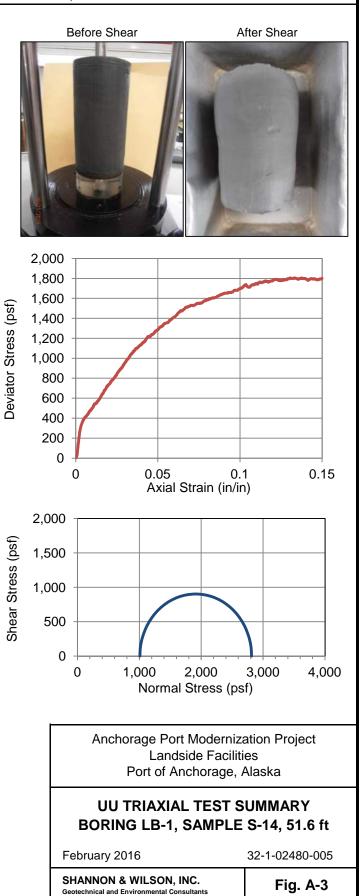
FIG. A-2

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION BORING LB-1, SAMPLE S-14, 51.6 ft

Lean Clay; CL; LL = 42; PL = 21; PI = 21; Gs = 2.7 (Assumed); Relatively Undisturbed.

	Pre-	Post-
_	Shear	Shear
Height, in	5.953	5.103
Diameter, in	2.845	
Aspect Ratio	2.09	
Wet Weight, g	1214.99	1215.86
Water Content	29.7%	29.8%
Wet Density, pcf	122.3	122.4
Dry Density, pcf	94.3	94.3
Void Ratio	0.8	
Saturation	100%	

Cell Pressure


Shear Rate

During Shear 1,010 psf 0.044 in/min 0.74 %/min

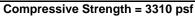
Axial	Deviator	Major	Minor							
Strain,	Stress,	Principal	Principal							
in/in	psf	Stress, psf	Stress, psf							
0.01	500	1,510	1,010							
0.02	740	1,740	1,010							
0.03	950	1,960	1,010							
0.04	1,140	2,150	1,010							
0.05	1,280	2,290	1,010							
0.06	1,410	2,420	1,010							
0.07	1,530	2,540	1,010							
0.08	1,590	2,600	1,010							
0.09	1,650	2,650	1,010							
0.10	1,690	2,700	1,010							
0.11	1,750	2,760	1,010							
0.12	1,780	2,790	1,010							
0.13	1,800	2,800	1,010							
0.14	1,800	2,810	1,010							
0.15	1,800	2,810	1,010							
	At Failure									
0.134	1,800	2,810	1,010							
Compressive Strength = 1800 psf										

NOTES:

1. Abbreviations:
ft = feet
g = grams
in = inch
Gs = Specific Gravity
LL = Liquid Limit
min = minute
pcf = pounds per cubic foot
PI = Plasticity Index (PI = LL - PL)
PL = Plastic Limit
psf = pounds per square foot
2. Water content obtained from entire specimen.
Tested By AKV
Finalized By JFL

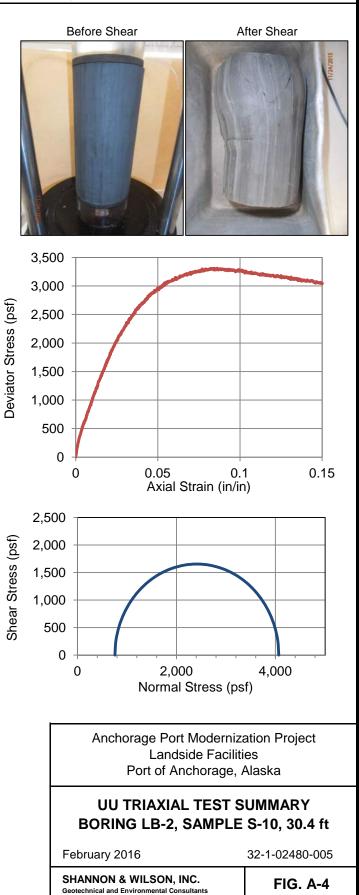
UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION BORING LB-2, SAMPLE S-10, 30.4 ft

Lean Clay; CL; LL = 34; PL = 19; PI = 15; Gs = 2.7 (Assumed); Relatively Undisturbed.


	Pre-	Post-
	Shear	Shear
Height, in	6.333	5.399
Diameter, in	2.866	
Aspect Ratio	2.21	
Wet Weight, g	1331.31	1333.2
Water Content	29.2%	29.3%
Wet Density, pcf	124.1	124.3
Dry Density, pcf	96.1	96.1
Void Ratio	0.8	
Saturation	100%	

Cell Pressure

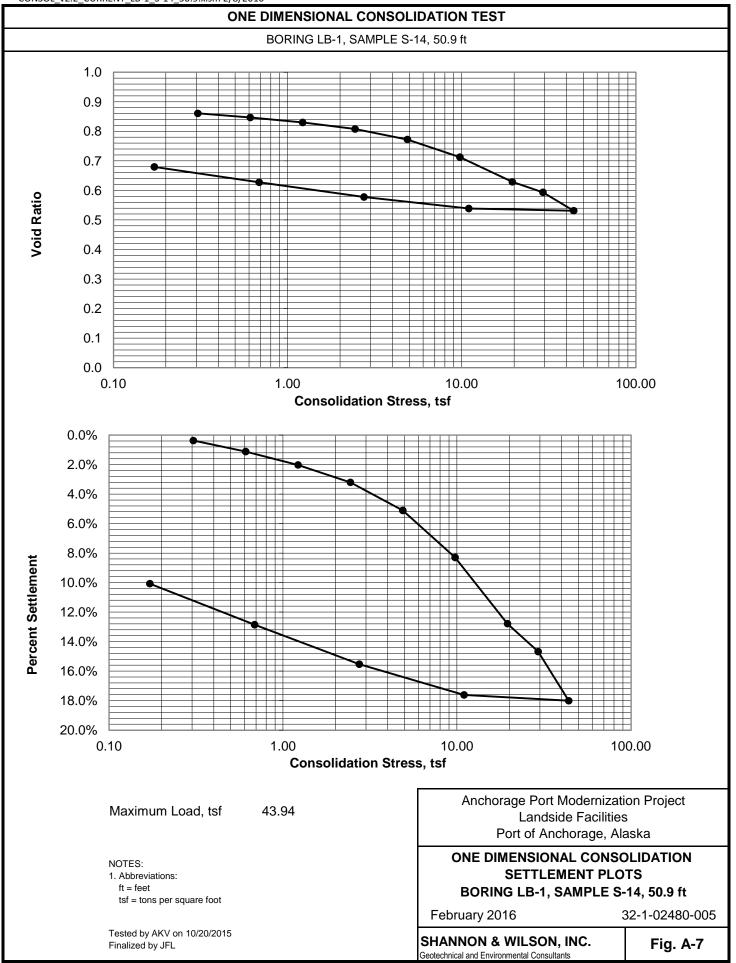
Shear Rate


During Shear 760 psf 0.044 in/min 0.69 %/min

Axial	Deviator	Major	Minor	
Strain,	Stress,	Principal	Principal	
in/in	psf	Stress, psf	Stress, psf	
0.01	990	1,740	760	
0.02	1,730	2,490	760	
0.03	2,290	3,040	760	
0.04	2,690	3,440	760	
0.05	2,970	3,720	760	
0.06	3,110	3,870	760	
0.07	3,240	4,000	760	
0.08	3,290	4,050	760	
0.09	3,290	4,040	760	
0.10	3,270	4,020	760	
0.11	3,220	3,980	760	
0.12	3,180	3,940	760	
0.13	3,130	3,890	760	
0.14	3,080	3,840	760	
0.15	3,050	3,810	760	
	At Fa	ailure		
0.084	3,310	4,070	760	

NOTES:

1. Abbreviations:
ft = feet
g = grams
in = inch
Gs = Specific Gravity
LL = Liquid Limit
min = minute
pcf = pounds per cubic foot
PI = Plasticity Index (PI = LL - PL)
PL = Plastic Limit
psf = pounds per square foot
2. Water content obtained from entire specimen.
Tested By AKV
Finalized By JFL



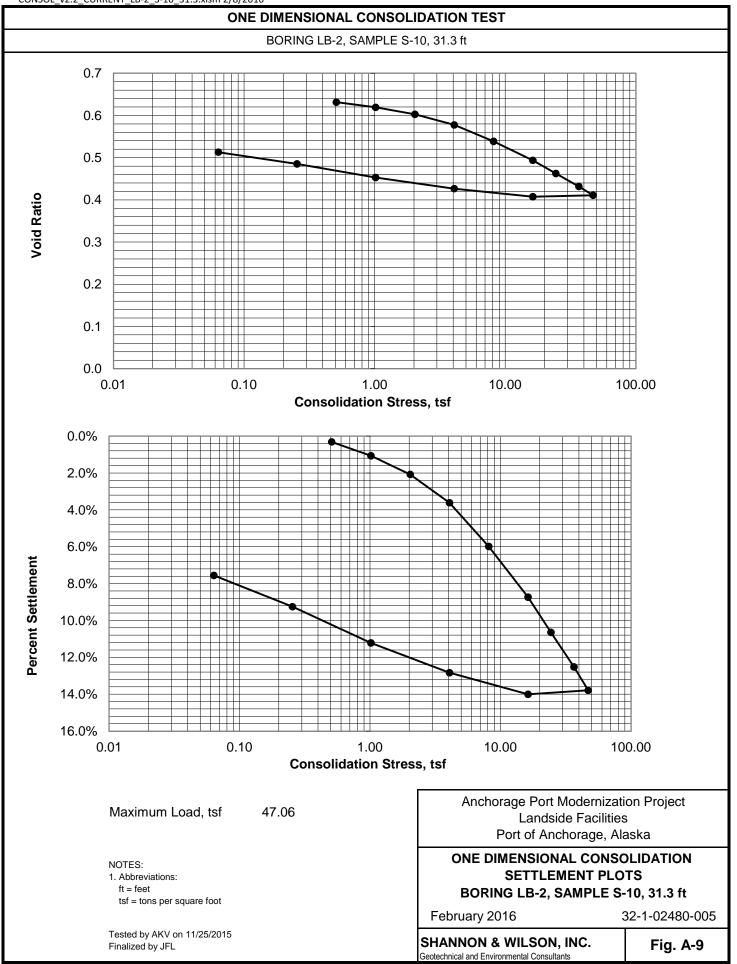
2/8/2016-CONSOL_v2.2_CURRENT_LB-1_S-14_50.9.xlsm-author											
ONE DIMENSIONAL CONSOLIDATION TEST											
BORING LB-1, SAMPLE S-14, 50.9 ft											
SPECIMEN DATA AND TEST RESULTS:											
Sample Classification:											
Gray, Lean Clay; CL Pre- Final											
								_	Inundation	Load	
	Specifi	c Gravity (E	stimated)	2	.7		ŀ	leight, inches	0.785	0.700	
	Opeoin	• •	quid Limit		12		Dia	meter, inches	2.816	2.816	
			astic Limit		21		Sample	Volume, cuin	4.890	4.358	
		Plast	icity Index		21		We	et Density, pcf	120.1	129.0	
			ating Load		13 tsf		Di	y Density, pcf	90.3	101.3	
			ating Load)2 tsf		V	Vater Content	33%	27%	
	Cooff of (ASTM Te Consol. Inte			nod B edure 1			Void Ratio	0.87	0.66	
			apretation	FIUCE				Saturation	100%	100%	
	Applied	1	4		ΔH			Coeff. of	Coeff. of	Coeff. of	
Increm.	Stress,	t _{load} ,	t ₅₀ ,	ΔH_{load} ,	at t ₁₀₀ ,	ΔH / H_{o}	Void Ratio	Comp.,	Consol.,	Perm.,	
	tsf	min	min	in	in		Natio	MPa ⁻¹	cm ² /sec	cm/sec	
1	0.31	1110	2.9	0.007	0.003	0.4%	0.861	0.70	1.13E-03	4.1E-08	
2	0.61	1275	2.4	0.015	0.009	1.1%	0.847	0.48	1.37E-03	3.4E-08	
3	1.22	175	1.6	0.023	0.016	2.0%	0.830	0.29	1.94E-03	3.0E-08	
4	2.44	270	1.3	0.035	0.025	3.2%	0.808	0.19	2.46E-03	2.5E-08	
5	4.88	3885	1.4	0.055	0.040	5.1%	0.772	0.15	2.19E-03	1.8E-08	
6	9.76	465	1.6	0.084	0.065	8.3%	0.713	0.13	1.81E-03	1.3E-08	
7	19.53	945	1.2	0.122	0.100	12.8%	0.629	0.09	2.11E-03	1.1E-08	
8	29.29	510	1.2	0.139	0.115	14.7%	0.593	0.04	2.02E-03	4.6E-09	
9	43.94	900	0.9	0.168	0.141	18.0%	0.531	0.04	2.51E-03	6.9E-09	
10	10.98	480	0.4	0.154	0.138	17.6%	0.539	0.00	6.02E-03	9.0E-10	
11	2.75	900	1.8	0.133	0.122	15.5%	0.578	0.05	1.26E-03	3.9E-09	
12	0.69	1440	7.5	0.109	0.101	12.9%	0.628	0.25	3.19E-04	5.0E-09	
13	0.17	1545	25.8	0.085	0.079	10.1%	0.680	1.05	9.94E-05	6.3E-09	

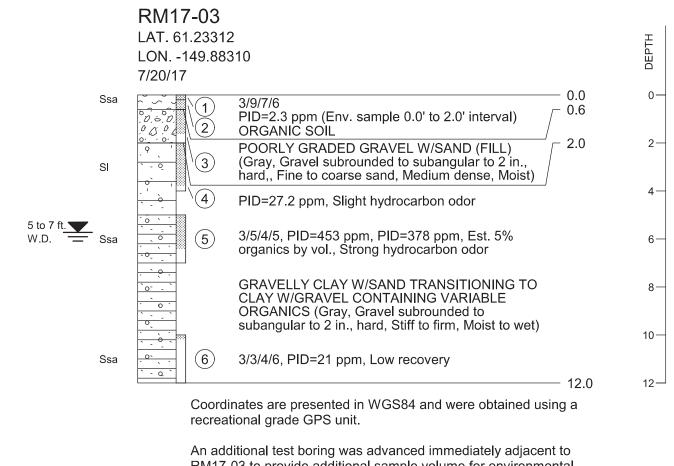
1. Abbreviations: Anchorage Port Modernization Project cm = centimeter in. = inch cm^2 = square centimeter Increm. = Increment Landside Facilities min = minute Coeff. = Coefficient Port of Anchorage, Alaska MPa = Mega-Pascal Comp. = Compressibility pcf = pounds per cubic foot Consol. = Consolidation ONE DIMENSIONAL CONSOLIDATION Perm. = Permeability cu in = cubic inch sec = second ft = feet **TEST SUMMARY** t_{load} = Duration of load increment H_o = initial height BORING LB-1, SAMPLE S-14, 50.9 ft tn = time at n% of primary consolidation ΔH = change in height tsf = tons per square foot ΔH_{load} = end of increment deformation February 2016 32-1-02480-005 2. Specimen trimmed using a trimming turntable and indundated with distilled water Tested by AKV on 10/20/2015 Fig. A-6

Finalized by JFL

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

2/8/2016-CONSOL_v2.2_CURRENT_LB-2_S-10_31.3.xlsm-author										
ONE DIMENSIONAL CONSOLIDATION TEST BORING LB-2, SAMPLE S-10, 31.3 ft SPECIMEN DATA AND TEST RESULTS:										
										Sampl
Gray, I	_ean Clay;	CL							Pre-	Final
									Inundation	Load
	Specific	c Gravity (E	atimated)	0	2.7			Height, inches	0.787	0.722
	Specific	• •	quid Limit		<i>1</i> 34		Dia	meter, inches	2.816	2.816
			astic Limit		19		Sample	Volume, cuin	4.899	4.497
			icity Index		15		•	et Density, pcf	127.9	135.0
			ating Load		13 tsf			ry Density, pcf	103.0	112.2
			ating Load	-	4 tsf			Vater Content	24%	20%
	o " · · ·	ASTM Te			nod B		•	Void Ratio	0.64	0.50
	Coeff. of C	Consol. Inte	rpretation	Proce	dure 1			Saturation	100%	100%
	Applied				ΔH			Coeff. of	Coeff. of	Coeff. of
Increm.	Stress,	t _{load} ,	t ₅₀ ,	ΔH_{load} ,	at t ₁₀₀ ,	ΔH / H_{o}	Void Rotio	Comp.,	Consol.,	Perm.,
	tsf	min	min	in	in		Ratio	MPa ⁻¹	cm ² /sec	cm/sec
1	0.51	1125	2.7	0.008	0.002	0.3%	0.632	0.35	1.20E-03	2.5E-08
2	1.02	155	2.0	0.016	0.008	1.1%	0.619	0.25	1.60E-03	2.4E-08
3	2.03	144	1.4	0.026	0.016	2.1%	0.603	0.17	2.19E-03	2.3E-08
4	4.07	144	1.4	0.041	0.028	3.6%	0.578	0.13	2.22E-03	1.8E-08
5	8.14	870	1.3	0.064	0.047	6.0%	0.539	0.10	2.23E-03	1.4E-08
6	16.28	108	1.0	0.088	0.069	8.7%	0.494	0.06	2.93E-03	1.1E-08
7	24.42	175	0.9	0.104	0.084	10.6%	0.462	0.04	2.89E-03	7.6E-09
8	36.63	155	0.8	0.121	0.099	12.5%	0.432	0.03	3.16E-03	5.6E-09
9	47.06	128	0.9	0.132	0.109	13.8%	0.411	0.02	2.66E-03	3.8E-09
10	16.28	150	0.1	0.126	0.110	14.0%	0.407	0.00	3.23E-02	2.7E-09
11	4.07	230	0.8	0.114	0.101	12.8%	0.427	0.02	3.06E-03	3.5E-09
12	1.02	1065	4.6	0.098	0.088	11.2%	0.453	0.09	5.52E-04	3.4E-09
13	0.25	4560	17.6	0.080	0.073	9.3%	0.485	0.44	1.50E-04	4.5E-09
14	0.06	1470	55.7	0.065	0.059	7.6%	0.513	1.52	4.94E-05	5.0E-09


NOTES:


1. Abbreviations: Anchorage Port Modernization Project cm = centimeter in. = inch cm^2 = square centimeter Increm. = Increment Landside Facilities min = minute Coeff. = Coefficient Port of Anchorage, Alaska MPa = Mega-Pascal Comp. = Compressibility pcf = pounds per cubic foot Consol. = Consolidation ONE DIMENSIONAL CONSOLIDATION Perm. = Permeability $\mathsf{cu} \text{ in} = \mathsf{cubic} \text{ inch}$ sec = second ft = feet **TEST SUMMARY** t_{load} = Duration of load increment H_o = initial height BORING LB-2, SAMPLE S-10, 31.3 ft tn = time at n% of primary consolidation ΔH = change in height tsf = tons per square foot ΔH_{load} = end of increment deformation February 2016 32-1-02480-005 2. Specimen trimmed using a trimming turntable and indundated with distilled water

Tested by AKV on 11/25/2015 Finalized by JFL

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

Fig. A-8

RM17-03 to provide additional sample volume for environmental sample collection. The two holes are treated as a single exploration.

CS: PTF17-TH03-01, 2'-4' PTF17-TH03-02, 5'-7' PTF17-TH09-02, 5'-7'

DWN: B.M.M. CKD: C.H.R. DATE: AUG. 17 SCALE: SHOWN

PROPOSED JET FUEL TANKAGE PORT OF ANCHORAGE LOG OF TEST BORING RM17-03

FB:	NA
GRID:	1031
PROJ.NO:	2520.01
DWG.NO:	B-08

Shannon & Wilson, Inc. (S&W), Uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory (testing procedures (ASTM D2487), If performed.

S&WINORGANIC SOIL CONSTITUENT DEFINITIONS

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹	
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴	
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly ⁴	More than 12% fine-grained: Silty or Clayey ³	
Minor	15%to:30% coarse-grained: <i>with</i> :Sand [®] or <i>with</i> :Gravel ⁴	5% to 12% fine-grained: <i>with</i> Silt or with Clay ³	
Follows major constituent	30% or more total coarse-grained and lesser coarse- grained constituent	15%@rimore@fa second@coarse- grained@constituent:	
1	is15%⊚r™ore: with Sand ⊚r with ⊡Gravel ⁵	with[Sand⊡or with[Gravel ⁵	

All percentages are by weight of total specimen passing a 3-inchisieve. ²The order of terms is: *Modifying Major with Minor*.

³Determined based on behavior.

⁴Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp but no visible water
- Wet Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

Hammer: 140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, ≥100 rpm NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer. 10 to 30 inches long Sampler: Shoe¹.D. ≡1.375 inches Barrel ①.D. ≡ 1.5 înches Barrel O.D. ≡ 2 inches N-Value: Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches. NOTE: Penetration resistances (N-values) shown on boring logs are as recorded in the field and have not been corrected for hammer immefficiency, overburden, or other factors.

PARTICLE SIZE DEFINITIONS				
DESCRIPTION	SIEVE NUMBER AND/OR APPROXIMATE SIZE			
FINES	<⊯200 ((0.075 mm ≡ 0.003 in.)			
SAND Fine Medium Coarse	#2001to1#401(0.0751to10.41mm;10.0031to10.021in.) #401to1#101(0.41to121mm;10.021to10.081in.) #101to1#41(21to14.751mm;10.081to10.1871in.)			
GRAVEL Fine Coarse	$\begin{array}{l} \#4: to: 3/4: in.: (4.75: to: 19:mm; [0.187: to: 0.75: in.) \\ 3/4: to: 3: in.: (19: to: 76: mm) \end{array}$			
COBBLES	3[to]]2[in.](76[to]]305[mm)			
BOULDERS	>12in. ((305imm)			

RELATIVE DENSITY // CONSISTENCY

COHESIONLESSISOILS		COHESI	VEISOILS
N, SPT, <u>BLOWS/FT.</u>	RELATIVE <u>DENSITY</u>	N,⊡SPT, <u>BLOWS/FT.</u> 9	RELATIVE CONSISTENCY
< 4	Verylloose	<[2	Very soft
4-10	Loose	2-4	Soft
10-30	Medium dense	4-8	Medium stiff
30-50	Dense	8-15	Stiff
> 50	Very dense	15 30	Very stiff
		>[30	Hard

WELL AND BACKFILL SYMBOLS

Bentonite Cement:Grout	Surface©cement Seal
Bentonite Grout	Asphalt or Cap
Bentonite Chips	Slough
Silica	Inclinometer or Non-perforated Casing
Perforated or Screened Casing	Vibrating [®] Wire Piezometer

Trace	<[5%
Few	5 to 10%
Little	15to 25%
Some	30 to 45%
Mostly	50 Ito 100%

¹Gravel, Sand, Iand fines Testimated by Tmass. Tother Constituents, Such as organics, Cobbles, Iand boulders, Testimated by Volume.

²Reprinted, With permission, from ASTM D2488 = 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, IPA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

Rancho:Mesa⊡ank.⊮arm Anchorage, ⊠laska

SOIL DESCRIPTION AND LOG KEY

January 2018

32-1-20034-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultant FIG. B-1 Sheet 1 of 3

(Modified From USACE Tech Memo			GROUP/GRAPHIC SYMBOL		TYPICALIDENTIFICATIONS
		Gravel	GW		Well-Graded@ravel;Well-Graded Gravel@ith@sand
	Gravels (more than 50%	(less[than]5% fines)	GP		Poorly:Graded:Gravel;Poorly:Graded Gravel:with:Sand
	of coarse fraction retained on No. 4 sieve)	SiltytortClayey Gravel	GM		Silty:Gravel;:Silty:Gravel:with:Sand
COARSE- GRAINED SOILS		(moreIthan12% fines)	GC		Clayey/Gravel;/Clayey/Gravel/with Sand
(more than 50% retained on No. 200 sieve)	Sands (50% or more of coarse fraction passes the No. 4 sieve)	Sand	sw		Well-Graded Sand; Well-Graded San with Gravel
		(lessīthanī5% fines)	SP		Poorly[Graded[Sand;[Poorly[Graded Sand[with[Gravel
		Silty⊺or Clayey'Sand (more⊺than⊡12% fines)	SM		Silty[Sand;[Silty[Sand]]with[Gravel
			sc		Clayey:Sand; Clayey:Sand with Grave
			ML		Silt; Silt with Sand or Gravel; Sandy o Gravelly Silt
	Silts⊡and⊡Clays (liquid∃imit⊡ess than⊡50)	Inorganic	CL		Lean Clay; ILean Clay with Sand or Gravel; Sandy or Gravelly ILean Clay
FINE-GRAINED SOILS (50% or more		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay
passes the No. 200 sieve)			мн		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravely Elastic Silt
	Silts⊡and Clays (liquid⊡imit 50⊚r more)	Inorganic	СН		FatiClay; FatiClay; with Sand or Grave Sandy or Gravelly FatiClay
		Organic	он		OrganiciSiltior:Clay;iOrganiciSiltior Clay/with/Sand/or:Gravel;Sandyfor Gravelly:OrganiciSiltior:Clay
HIGHLY- ORGANIC SOILS	Primarily organic matter, dark in color, and organic odor		PT		Peat or other highly organic soils (see ASTM D4427)

NOTE: No.4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

NOTES

- 1. Dual symbols (symbols separated by a hyphen, fi.e., SP-SM, Sand with Sitt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., (SP and SM).
- 2. Borderline symbols (symbols separated by a slash, ii.e., ICL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

Rancho Mesa Tank Farm Anchorage, Alaska

SOIL DESCRIPTION AND LOG KEY

January 2018

32-1-20034-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. B-1 Sheet 2 of 3

Poorly Grad	GRADATION TERMS led Narrow range of grain sizes prese	nt	
Foony	or, within the range of grain sizes present, one or more sizes are missing (Gap Graded). Meets crit		
Well-Grad	in ASTM D2487, if itested. led Full range and even distribution of grain sizes present. Meets criteria ASTM D2487, if itested.		
Weak	Crumbles or breaks with handling or		
Moderate	slightfingerpressure Crumblesorbreakswithconsiderab	le	
Strong	finger@ressure Will@ot@rumble@r@reak@vithfinger pressure		
	PLASTICITY ²		
			YY
DESCRIPTION Nonplastic		NGE 4	=
Low	Althread can barely be rolled and 4 to a fump cannot be formed when	o10)
Medium	much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic	to [2)	0
High	limit. AlumpCrumbles when drier than the plastic limit. It take considerable time rolling > and kneading to reach the plastic limit. A thread can be rerolled several times after reaching the plastic limit. IA lump can be formed without crumbling when	20	
	drier@than@the@plastic@imit.		
Mottled	Irregular patches of different colors.	1	
Bioturbated	Soil disturbance or mixing by plants or animals.		
Diamict	Nonsorted Sediment; Sand and gravel in Silt and/or Clay matrix.		Interb Lam
Cuttings	Material brought to surface by drilling.		_
Slough	Material that caved from sides of borehole.		Fi: Slicke
Sheared	Disturbed texture, mix of strengths.		
PARTICLE		_	
Angular	Sharp@dges@nd@npolished@lanar surfaces.		L
Subangular	Similar to angular, but with rounded edges.		Homoge
Subrounded	Nearlyplanarsideswithwell-rounded edges.		
Rounded	Smoothly curved sides with no edges.		
Flat	Width/thickness r atio ≥ 3.		
Elongated	Length/width ratio ≥ 3.		
escription and Ider ternational, 100 Ba e complete standa dapted, with perm	mission, from ASTM D2488 09a Standard P ntification of Soils (Visual-Manual Procedure), arr Harbor Drive, West Conshohocken, PA19 rd may be obtained from ASTM International, ission, from ASTM D2488 09a Standard Pra ntification of Soils (Visual-Manual Procedure),	, Cop 9428 , WW actice	yright⊠AST .⊡Aicopyio w.astm.org e⊺for

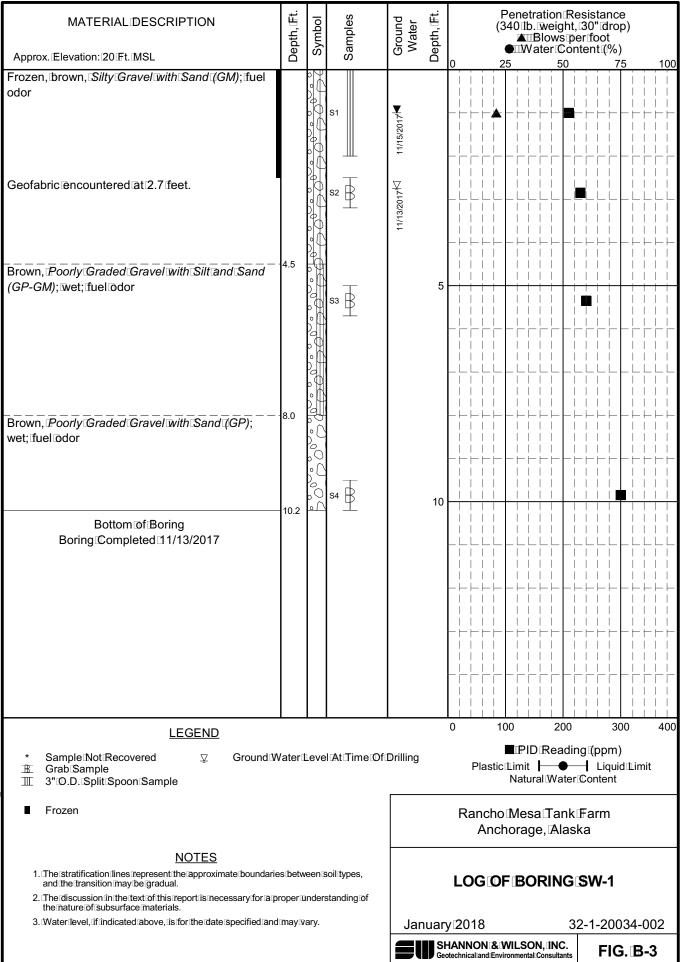
ACRONYMS AND ABBREVIATIONS

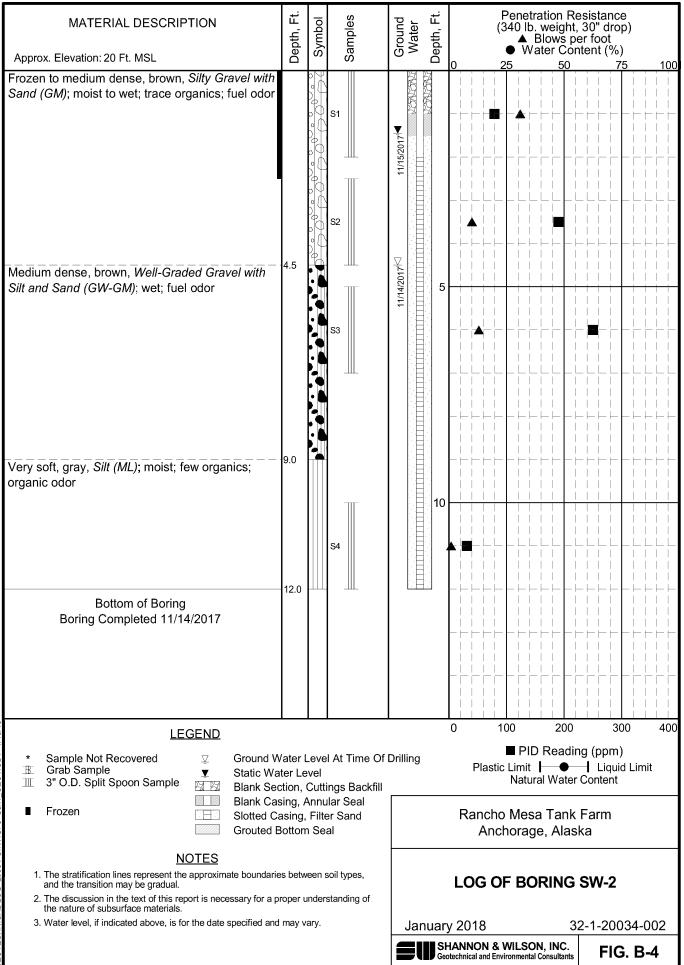
	AC	RONYMS AND ABBREVIATIONS				
	ATD	At Time of Drilling				
	Diam.	Diameter				
	Elev.	Elevation				
ft.		Feet				
	FeO	Iron@xide				
	gal.	Gallons				
	Horiz.	Horizontal				
	HSA	Hollow Stem Auger				
	I.D.	Inside Diameter				
	in.	Inches				
	lbs.	Pounds				
	MgO	Magnesium Oxide				
	mm	Millimeter				
	MnO	Manganese Oxide				
	NA	Not Applicable or Not Available				
	NP	Nonplastic				
	O.D.	Outside Diameter				
	OW	Observation Well				
	pcf	Pounds per Cubic Foot				
	PID	Photo-Ionization Detector				
	PMT	PressuremeterTest				
	ppm	Parts per Million				
	psi	Pounds per Square Inch				
	PVC	PolyvinylChloride				
	rpm	Rotations per Minute				
	SPT	Standard Penetration Test				
	USCS	Unified Soil Classification System				
	\mathbf{q}_{u}	Unconfined Compressive Strength				
	VWP	Vibrating Wire Piezometer				
	Vert.	Vertical				
	WOH	Weight of Hammer				
	WOR	Weight of Rods				
ļ	Wt.	Weight				
	ST					
e	edded Alte	rnating layers of varying material or color				
	with	flayers at fleast 1/4-inch thick; singular: bed.				
I	nated Alte with	rnating layers of varying material or color layers less than 1/4-inch thick; singular:				
	lamination.					

Fissured	Breaks along definite planes or fractures with
	little resistance.
lickensided	Fracture planes appear polished or glossy;
	sometimes striated.
Blocky	Cohesive soil that can be broken down into
-	small@ngularflumpsfthatresistfurther
	The second se

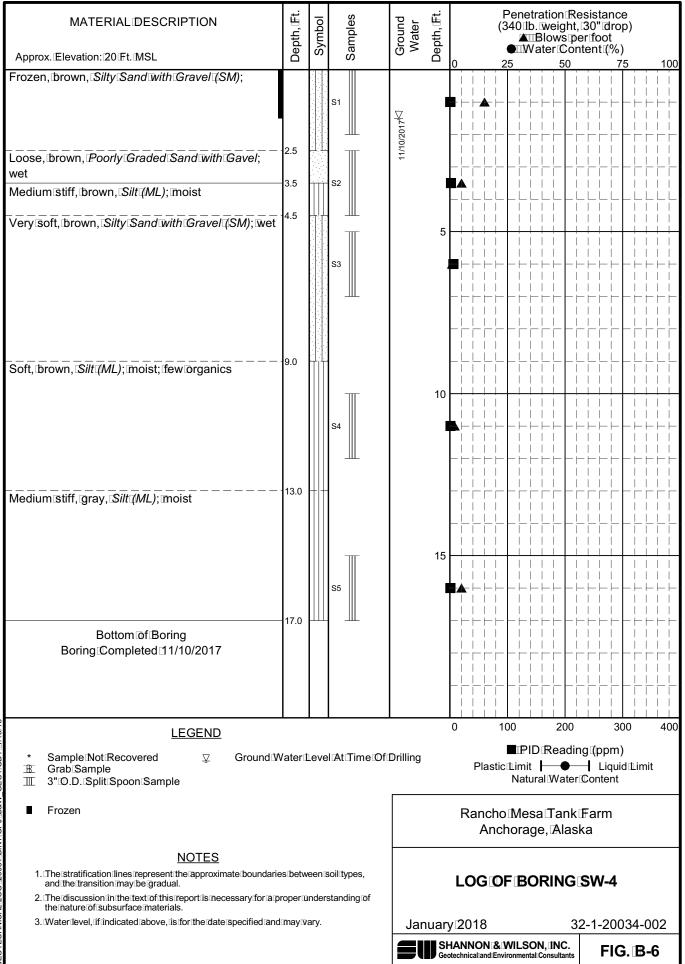
Lensed	breakdown. Inclusion of small pockets of different soils, such as small lenses of sand scattered through
mogeneous	a mass of clay. Same color and appearance throughout.

Rancho⊡Mesa⊡ankı ∰arm Anchorage, ⊡Alaska

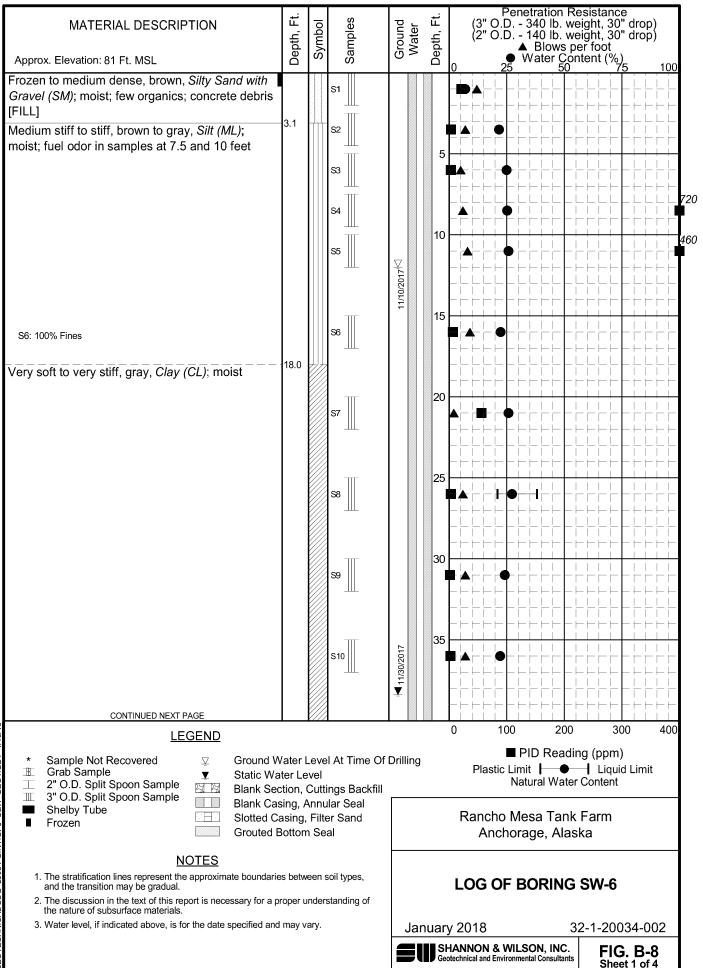

SOIL DESCRIPTION AND LOG KEY

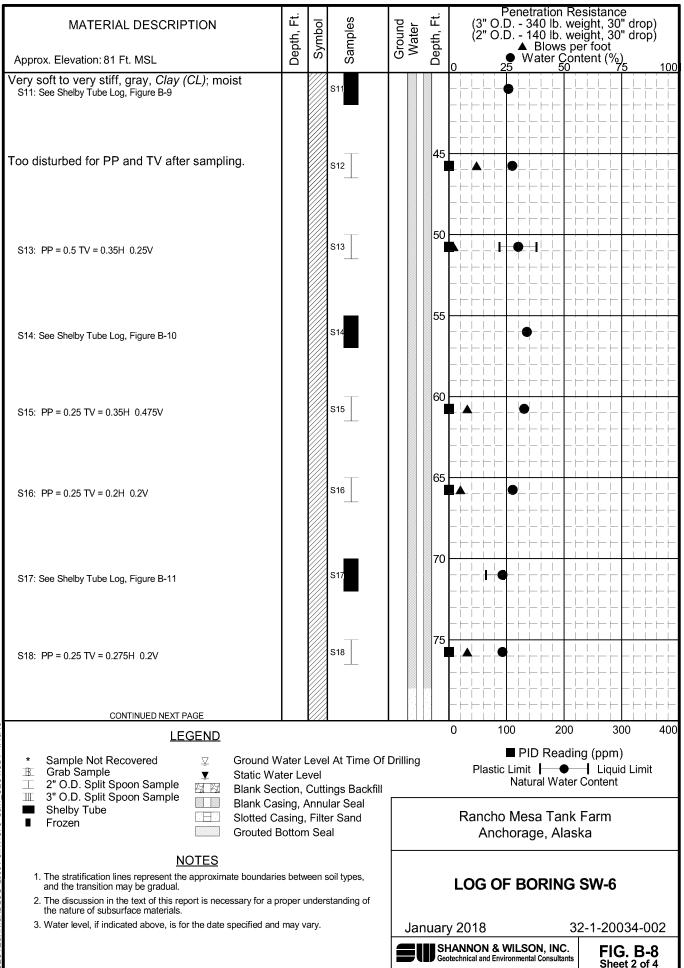

January 2018

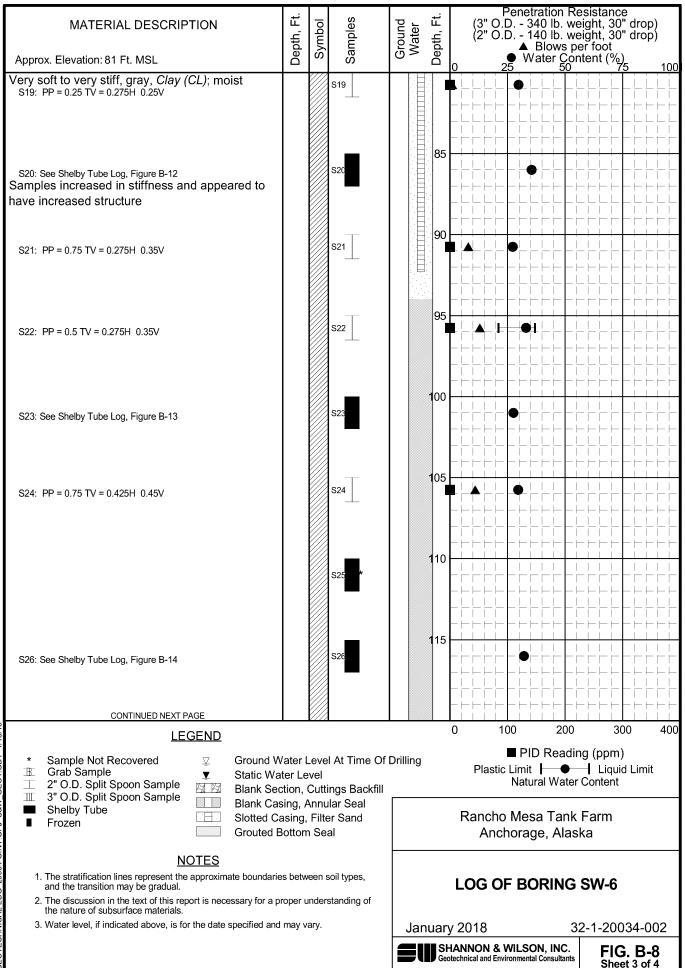
32-1-20034-002

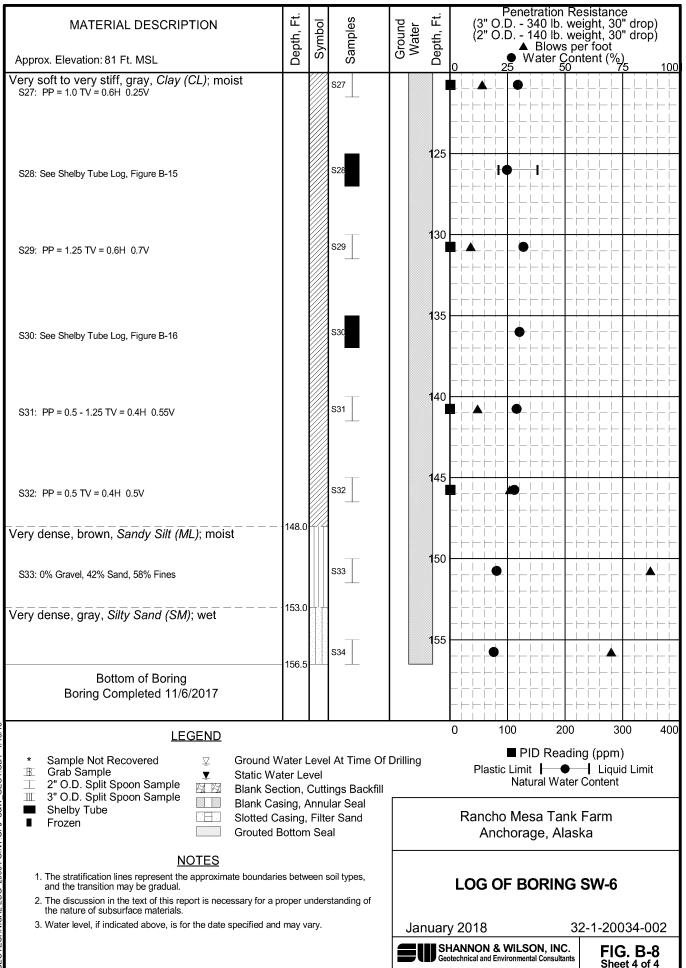

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. B-1 Sheet 3 of 3

GROUP		0.02 Mil.	P-200*	USC SYSTEM (based on P-200 results)			
	Sandy Soils	0 to 3	0 to 6	SW, SP, SW-SM, SP-SM			
NFS	Gravelly Soils	0 to 3	0 to 6	GW, GP, GW-GM, GP-GM			
F1	Gravelly Soils	3 to 10	6 to 13	GM, GW-GM, GP-GM			
F2	Sandy Soils	3 to 15	6 to 19	SP-SM, SW-SM, SM			
ΓZ	Gravelly Soils	10 to 20	13 to 25	GM			
	Sands, except very fine silty sands**	Over 15	Over 19	SM, SC			
F3	Gravelly Soils	Over 20	Over 25	GM, GC			
	Clays, PI>12			CL, CH			
	All Silts			ML, MH			
	Very fine silty sands**	Over 15	Over 19	SM, SC			
F4	Clays, PI<12			CL, CL-ML			
	Varved clays and other fined grained, banded sediments			CL and ML CL, ML, and SM; SL, SH, and ML; CL, CH, ML, and SM			
P-200 = Percent passing the number 200 sieve 0.02 Mil. = Percent material below 0.02 millimeter grain size PI = Plasticity Index Rancho Mesa Tank Farm Anchorage, Alaska							
*Approximate P-200 value equivalent for frost classification.							




MATERIAL DESCRIPTION	ol Ft.	es	Pr Ft.	Penetration Resistance
	Depth, Ft. Symbol	Samples	Ground Water Depth, Ft.	(340 lb. weight, 30" drop) ▲ Blows per foot ● Water Content (%)
Approx. Elevation: 20 Ft. MSL		õ		0 25 50 75 100
Frozen to loose, brown, <i>Silty Gravel with Sand</i> (<i>GM</i>); wet; fuel odor; concrete debris in upper 2 feet		S1	2102/01/11 ► 2102/01/11	
Very soft, gray, <i>Silt (ML)</i> ; moist; few organics	10.4	S4		
Bottom of Boring Boring Completed 11/10/2017	- 12.0			
LEGEND				0 100 200 300 400
	Ground Water Level At Time Of I Static Water Level Blank Section, Cuttings Backfill Blank Casing, Annular Seal Slotted Casing, Filter Sand Grouted Bottom Seal			■ PID Reading (ppm) Plastic Limit ↓ ● ↓ Liquid Limit Natural Water Content Rancho Mesa Tank Farm Anchorage, Alaska
 NOTES 1. The stratification lines represent the approximate boundari and the transition may be gradual. 2. The discussion in the text of this report is necessary for a the nature of subsurface materials. 	ies between s proper unders	soil types,		LOG OF BORING SW-3
3. Water level, if indicated above, is for the date specified an	3. Water level, if indicated above, is for the date specified and may vary.			y 2018 32-1-20034-002
				HANNON & WILSON, INC. technical and Environmental Consultants FIG. B-5





1/15/18

SHANNON & WILSON, INC.

APPENDIX C

RESULTS OF LIMITED ENVIRONMENTAL CHARACTERIZATION

SHANNON & WILSON, INC.

TABLE OF CONTENTS

Page

C.1	INTRO	DUCTION	1
C.2	BACKO	GROUND	1
C.3	FIELD	ACTIVITIES	2
	C.3.1	Soil Screening and Sampling	2
	C.3.2	Monitoring Well Installation	3
	C.3.3	Monitoring Well Development	3
	C.3.4	Monitoring Well Sampling	
	C.3.5	Investigation-Derived Waste Management	4
C.4	LABOR	ATORY ANALYSES	4
C.5	DISCUS	SSION OF ANALYTICAL RESULTS	4
	C.5.1	Soil Sample Analytical Results	5
	C.5.2	Groundwater Sample Analytical Results	5
	C.5.3	Quality Control Samples	6
C.6	CONCL	USIONS	7

TABLES

C-1	Sample Locations and Descriptions
C-2	Monitoring Well Development and Sampling Log
C-3	Summary of Soil Analytical Results

C-4 Summary of Groundwater Analytical Results

ATTACHMENTS

- C-1 Field Notes
- C-2 Monitoring Well Construction Details
- C-3 Results of Analytical Testing by SGS North America, Inc. and ADEC Laboratory Data Review Checklists

APPENDIX C

RESULTS OF LIMITED ENVIRONMENTAL CHARACTERIZATION

C.1 INTRODUCTION

Shannon & Wilson conducted limited site characterization activities at the former Defense Fuels Support Point-Anchorage (DFSP-A) in support of the design and construction of the proposed Rancho Mesa Tank Farm at the Port of Anchorage, Alaska. This work was conducted concurrently with geotechnical explorations conducted for the project. The purpose of the site characterization activities was to provide data to supplement existing information and to support earthwork and dewatering design, permitting for construction, and preliminary evaluation of indoor air concerns for occupied structures; which will be conducted in future phases of work and are not included as part of this report.

C.2 BACKGROUND

The lease area for the proposed tank farm project is located within a former truck/rail car loading rack area at the former DFSP-A bulk fuel storage and distribution facility. DFSP-A was in operation from 1942 to 1996. Numerous releases of diesel fuel, turbine fuel, unleaded gasoline, slop fuel, and transformer fluid were documented at the facility between 1960 and 1989. In addition, several fuel releases were documented at neighboring facilities that may have also impacted the former loading rack area. Following cleanup and assessment activities, the DFSP-A site was granted a Cleanup Complete with Institutional Controls (ICs) designation by the ADEC in an April 2003 Record of Decision (ROD). The ROD states that the contaminants of concern (COCs) in soil, groundwater, and surface water for the site are gasoline range organics (GRO), diesel range organics (DRO), benzene, toluene, ethylbenzene, and xylenes (BTEX). The ROD also provides site specific soil and groundwater cleanup levels for these contaminants. However; based on feedback from ADEC during development of our work plan, it is our understanding that the soil cleanup levels for the ROD-listed site COCs are the applicable ADEC Method Two Human Health cleanup levels. The ADEC also specified that the levels for residual range organics (RRO), although not listed in the ROD as a COC for the site, should be compared to the Method Two Human Health criteria. Similarly, the ADEC also specified that groundwater sampling results should be compared to the Table C cleanup level values instead of the cleanup level presented in the ROD, which were 10 times the ADEC groundwater cleanup levels.

Rancho Mesa Tank Farm.docx

C.3 FIELD ACTIVITIES

Field work for this project consisted of advancing and sampling six soil borings; installing, developing, and sampling two groundwater monitoring wells; and managing investigationderived waste (IDW). The locations of the borings/monitoring wells and general site features are shown on Figure 2 in the report. Field notes are included in Attachment C-1. Monitoring well construction details are included in Attachment C-2. Laboratory results are provided in Attachment C-3. Soil and groundwater conditions at the site are described in detail in Sections 5.1 and 5.2. Boring logs are located in Appendices A and B of this report.

C.3.1 Soil Screening and Sampling

Soil samples were collected using 3-inch outside diameter, split-spoon samplers driven using a 340-pound hammer. In each boring, field screening samples were collected at approximately 2.5-foot intervals until groundwater was encountered and at 5-foot intervals thereafter to the bottom of the boring. Immediately following retrieval and opening of the split-spoons, the analytical samples and field screening samples were collected. The analytical sample jars for volatile analyses were collected first, followed by the non-volatile analytical sample jars, and finally the field screening sample. Each soil sample was visually described and "screened" for volatile organic compounds (VOCs) using a photoionization detector (PID) and ADEC-approved headspace screening techniques. The PID was calibrated before screening activities with 100 parts per million (ppm) isobutylene standard gas. The field screening samples were collected in re-sealable plastic bags, warmed to a common temperature, and tested within 60 minutes of collection.

Two analytical samples were collected from each boring and submitted for analysis. One sample was collected from the interval just above the soil/water interface and the second sample was collected from the sample interval with the highest PID measurement. The analytical soil samples tested for volatile constituents were collected using methanol preservation. In accordance with the method, at least 25 grams of soil were quickly placed into a laboratory supplied 4-ounce jar that had been pre-weighed. Afterward, 25 milliliters of reagent grade methanol was added to submerge the soil. The methanol extracts the hydrocarbons from the soil at the time of sampling, thereby reducing the possible loss of volatile constituents prior to sample analysis. The samples were transferred to the appropriate laboratory in coolers with ice packs using chain-of-custody procedures. The sample locations and descriptions are summarized in Table C-1 and on the Boring Logs in Appendix B.

Rancho Mesa Tank Farm.docx

C.3.2 Monitoring Well Installation

Borings SW-2 and SW-3 were completed as Monitoring Wells SW-2 and SW-3, respectively. The monitoring wells were constructed of 2-inch nominal inside diameter, schedule 40, polyvinyl chloride (PVC) pipe with threaded connections. The lower sections of the wells were constructed of 10-foot sections of PVC well screen with 0.010-inch slots. A continuous #10 to #20 silica sand pack was used to backfill around the well screens to about 0.5 feet above the screened sections. Bentonite chips were used to backfill above the filter pack to approximately 1 foot bgs. Pea gravel was placed above the bentonite to match the existing ground surface. The monitoring wells were completed with flush mount protective casings that were embedded in the pea gravel. Monitoring well construction details are included in Attachment C-2.

C.3.3 Monitoring Well Development

Shannon & Wilson developed the monitoring wells on November 17 and 20, 2017. Prior to initiating the well development activities, water depth relative to the top of the well casings and the presence of free product was measured with a multi-phase probe. Groundwater levels were 1.4 and 1.45 feet below top of casing and no free product was encountered. The wells were developed using a surge block and a submersible pump with dedicated disposable tubing. Five to 10-minute periods of surging were alternated with periods of purging. During well development, water quality parameters, including pH, specific conductance, temperature, and turbidity were measured with Hanna and Hach water quality instruments. Development of Monitoring Well SW-2 began on November 17, 2017 but was halted after 7 gallons were purged from the well. Development was continued on November 20, 2017 and considered complete after three hours of total development effort had been expended. A total of 52 gallons was removed from the well during development. Development of Monitoring Well SW-3 was considered complete after 55 gallons of water were removed. Water quality parameters did not stabilize to standard acceptance criteria during development in either well. Final water quality parameters are listed in Attachment C-1 in the field notes. Approximately 52 and 55 gallons were removed from Monitoring Wells SW-2 and SW-3, respectively. Development water generated as part of this project was placed in two, labeled 55-gallon drums and stored on site. Well development data are summarized in Table C-2.

C.3.4 Monitoring Well Sampling

Groundwater samples were collected from Monitoring Wells SW-3 and SW-2 on November 17 and 20, 2017, respectively. In accordance with the work plan, the wells were allowed to recharge to 80 percent of the original water volume before collecting groundwater samples. The

wells were sampled using a submersible pump and dedicated tubing. Sampling data are included in Table C-2.

Analytical samples were collected by transferring water directly from the pump tubing into the laboratory supplied containers. The sample jars were filled in decreasing order of volatility.

C.3.5 Investigation-Derived Waste Management

IDW consisted of soil cuttings, development water, and purge water. Drill cuttings and development water from the borings and wells were containerized in labeled 55-gallon drums and are stored on-site at the former DFSP-A area. Shannon and Wilson was coordinating IDW disposal at the time of this report.

C.4 LABORATORY ANALYSES

The soil and groundwater samples were submitted to SGS North America Inc. (SGS) for analytical testing using chain-of-custody procedures. The laboratory reports and completed ADEC Laboratory Data Review Checklists (LDRCs) are provided in Attachment C-3.

Fourteen analytical soil samples, including two duplicates, were submitted and analyzed for GRO by Alaska Method (AK) 101; DRO by AK 102; RRO by AK 103; BTEX by Environmental Protection Agency (EPA) Method 8021B; volatile organic compounds (VOCs) by EPA Method 8260C; and polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D SIM. One soil trip blank accompanied the samples and was analyzed for GRO by AK 101 and VOCs by EPA Method 8260C. The analytical soil sample results are summarized in Table C-3.

Three groundwater samples, including one duplicate, were submitted and analyzed for GRO by AK 101, DRO by AK 102, RRO by AK 103, BTEX by EPA Method 8021B, VOCs by EPA Method 8260C, and PAHs by EPA Method 8270D SIM. One water trip blank accompanied the samples and was analyzed for GRO by AK 101 and VOCs by EPA Method 8260C. The analytical groundwater sample results are summarized in Table C-4.

C.5 DISCUSSION OF ANALYTICAL RESULTS

The analytical soil and groundwater results were compared to ADEC cleanup levels presented in the 18 Alaska Administrative Code (AAC) 75 regulations (October 2017) and the water quality standards listed in 18 AAC 70 (February 2017). The applicable soil criteria consist of the most stringent ADEC Method Two cleanup levels or Human Health cleanup levels listed in Tables B1 and B2 of 18 AAC 75.341, for the "under 40-inch (precipitation) zone," and groundwater

cleanup levels are presented in Table C of 18 AAC 75.345. Human health cleanup levels were used as a comparison for GRO, DRO, RRO, and BTEX, in accordance with ICs for the site.

C.5.1 Soil Sample Analytical Results

1,2,4-trimethylbenzene (2.73 milligrams per kilogram [mg/kg] to 6.84 mg/kg), naphthalene (0.583 mg/kg to 1.9 mg/kg by EPA Method 8260C and 1.09 mg/kg to 1.42 mg/kg by EPA Method 8270D SIM), 1-methylnaphthalene (1.86 mg/kg to 2.25 mg/kg), and 2methylnaphthalene (2.64 mg/kg to 3 mg/kg) were detected in Samples SW2-S3 and SW3-S2 at concentrations greater than the most stringent ADEC Method Two cleanup levels of 0.16 kg/mg, 0.038 mg/kg, 0.41 mg/kg, and 1.3 mg/kg, respectively. Sample SW3-S2 also contained a concentration of 1,3,5-trimethylbenzene (2.08 mg/kg) at a concentration greater than the most stringent ADEC Method Two cleanup levels were either not detected or detected below the applicable cleanup levels.

None of the samples tested contained concentrations above the ADEC Method Two Human Health criteria for COCs at the site (GRO, DRO, RRO, and BTEX). It is noted that each of these analytes were detected at concentrations exceeding the ADEC Migration to Groundwater cleanup levels. The maximum COC concentrations detected in the samples tested as part of this study are summarized in the table below for reference.

Compound Tested	Human Health Cleanup Level (mg/kg)	Maximum Concentration (mg/kg) and Sample ID				
GRO	1,400	335 J+ (Sample SW3-S20)				
DRO 10,250		2,320 (Sample SW3-S20)				
RRO	10,000	4,260 (Sample SW1-S1)				
Benzene	11	3.51 (Sample SW1-S1)				
Toluene	200	23.4 (Sample SW3-S20)				
Ethylbenzene	49	5.51 (Sample SW3-S20)				
Xylenes	57	44.1 (Sample SW3-S20)				

C.5.2 Groundwater Sample Analytical Results

DRO (2,660 micrograms per liter [μ g/L] to 4,030 μ g/L), benzene (550 μ g/L to 2,700 μ g/L), ethylbenzene (157 μ g/L to 695 μ g/L), and xylenes (409 μ g/L to 4,880 μ g/L) were detected in

each of the groundwater samples at concentrations exceeding the ADEC Table C cleanup levels of 1,500 μ g/L, 15 μ g/L, and 190 μ g/L, respectively. GRO (maximum of 22,300 μ g/L) and toluene (maximum of 4,300 μ g/L) were detected in duplicate Samples SW-3/SW-30 at concentrations exceeding the ADEC Table C cleanup levels of 2,200 μ g/L and 1,100 μ g/L, respectively. Sample SW-2 also contained 180 μ g/L 1,2,4-trimethylbenzene, 1.97 μ g/L 1,2-dichloroethane, 44.7 μ g/L naphthalene by EPA Method 8260C, 26.1 μ g/L naphthalene by EPA Method 8270D, and 12.7 μ g/L dichlorodifluoromethane which exceed the ADEC Table C cleanup levels of 15 μ g/L, 1.7 μ g/L, 1.7 μ g/L, and 11 μ g/L, respectively. The remaining tested analytes were either not detected or detected below the ADEC cleanup levels.

Total aromatic hydrocarbon (TAH) and total aqueous hydrocarbon (TAqH) concentrations were calculated based on the total based on the total BTEX and total PAH concentrations. The TAH concentration (1,180 μ g/L) and TAqH concentration (1,238 μ g/L) were greater than the ADEC water quality standards of 10 μ g/L and 15 μ g/L, respectively.

C.5.3 Quality Control Samples

The project laboratory follows on-going quality assurance/quality control procedures to evaluate conformance to applicable ADEC data quality objectives (DQOs). Internal laboratory controls to assess data quality for this project include surrogates, method blanks, matrix spike/matrix spike duplicates (MS/MSD), and laboratory control sample/laboratory control sample duplicates (LCS/LCSD) to assess precision, accuracy, and matrix bias. If a DQO was not met, the project laboratory provides a brief narrative concerning the problem in the case narrative of their laboratory reports (see Attachment C-3).

External quality controls included duplicate samples and trip blanks. Three duplicate sets, two soil (SW1-S2/SW1-S20 and SW3-S2/SW3-S20) and one groundwater (SW-3/SW-30), were collected to assess precision of the sampling and analysis processes using the calculated relative percent difference (RPD). The RPDs are within the ADEC recommended DQO of 50 percent for soil and 30 percent for groundwater, with the exception of benzene and toluene in the SW3-S2/SW3-S20 sample set (126% and 70%, respectively) and GRO, ethylbenzene, and xylenes in the groundwater samples (73%, 71%, and 61% respectively). Therefore, these results are flagged "E" on Tables C-3 and C-4 to indicate that the sample results are estimated due to the RPD failures.

Phenanthrene was detected at an estimated concentration in a laboratory method blank for groundwater analysis. The affected project sample contained more than ten times the concentration detected in the method blank, therefore the sample is considered unaffected.

One soil trip blank (Sample STB) and one water trip blank (Sample WTB) accompanied the sample jars and bottles, as appropriate, from the laboratory to the site during sampling activities and back again to SGS. The soil trip blank did not contain any detectable concentrations of GRO and/or VOCs, indicating that the soil samples were not cross contaminated or exposed to contamination during sample handling, storage, or testing. The water trip blank contained bromoform (0.800J μ g/L) and dibromochloromethane (0.760 μ g/L) at concentrations less than applicable cleanup levels. Bromoform and dibromochloromethane were not detected in the sample, therefore the sample is considered unaffected.

Shannon & Wilson conducted a limited data assessment to review the laboratory's compliance with precision, accuracy, sensitivity, and completeness to the data quality objectives. Shannon & Wilson reviewed the SGS data deliverables and completed the ADEC's LDRCs, which are included in Attachment C-3. No non-conformances that would adversely affect the quality or usability of the data were noted.

C.6 CONCLUSIONS

Based on the analytical results, soil and groundwater contamination, presumed to be associated with the former DFSP-A facility operations, exists within the proposed area of development. Soil analytical results indicate that concentrations of the site COCs (GRO, DRO, RRO, and BTEX) were below the ADEC Method Two Human Health cleanup levels but exceed the ADEC Migration to Groundwater cleanup levels in several samples. Several VOC and PAH compounds were also detected at concentrations exceeding the applicable ADEC Migration to Groundwater cleanup levels.

Groundwater impacted with petroleum hydrocarbons, and several VOC and PAH compounds exceeding the ADEC cleanup levels was documented in the monitoring wells installed and sampled during the project. In addition, the sample collected from Monitoring Well SW-2 contained TAH and TaqH at concentrations exceeding the ADEC water quality standards.

		Sample Location	Depth	Headspace
Sample Number	Date	Sample Location	(feet bgs)	(ppm) ^
Soil Samples				
Boring SW-1				
* SW1-S1	11/13/2017	Boring SW-1, Sample 1	0-2	210
* SW1-S1	11/13/2017	Boring SW-1, Sample 1 Boring SW-1, Sample 2	2.5-3.2	210
				230 230
* SW1-S20	11/13/2017	Duplicate of Sample SW1-S2	2.5-3.2	
SW1-S3	11/13/2017	Boring SW-1, Sample 3	5-5.7	240
SW1-S4	11/13/2017	Boring SW-1, Sample 4	9.5-10.2	300
Boring SW-2				
* SW2-S1	11/13/2017	Boring SW-2, Sample 1	0-2	79
SW2-S2	11/14/2017	Boring SW-2, Sample 2	2.5-4.5	190
* SW2-S3	11/14/2017	Boring SW-2, Sample 3	5-7	250
SW2-S4	11/14/2017	Boring SW-2, Sample 4	10-12	31
Boring SW-3				
* SW3-S1	11/10/2017	Boring SW-3, Sample 1	0-2	170
* SW3-S2	11/10/2017	Boring SW-3, Sample 2	2.5-4.5	340
* SW3-S20	11/10/2017	Duplicate of Sample SW3-S2	2.5-4.5	340
SW3-S3	11/10/2017	Boring SW-3, Sample 3	5-7	240
SW3-S4	11/10/2017	Boring SW-3, Sample 4	10-12	300
Boring SW-4				
* SW4-S1	11/10/2017	Boring SW-4, Sample 1	0-2	0.5
SW4-S2	11/10/2017	Boring SW-4, Sample 2	2.5-4.5	1.9
* SW4-S3	11/10/2017	Boring SW-4, Sample 3	5-7	6.2
SW4-S4	11/10/2017	Boring SW-4, Sample 4	10-12	1.0
SW4-S5	11/10/2017	Boring SW-4, Sample 5	15-17	0.8

TABLE C-1 SAMPLE LOCATIONS AND DESCRIPTIONS

Notes:

* = Sample analyzed by the project laboratory (See Tables C-3 and C-4)

 Field screening instrument was a Thermo Environmental Instruments 580B photoionization detector (PID).

- = Measurement not recorded or not applicable

bgs = below ground surface

ppm = parts per million

SAMI LE LOCATIONS AND DESCRIPTIONS									
~	D (Sample Location	Depth	Headspace (ppm) ^					
Sample Number	Date		(feet bgs)	(ppm) ··					
Soil Samples Continued									
Boring SW-5									
* SW5-S1	11/10/2017	Boring SW-5, Sample 1	0-2	1.5					
SW5-S2	11/10/2017	Boring SW-5, Sample 2	2.5-4.5	1.7					
* SW5-S3	11/10/2017	Boring SW-5, Sample 3	5-7	2.2					
SW5-S4	11/10/2017	Boring SW-5, Sample 4	10-12	1.0					
SW5-S5	11/10/2017	Boring SW-5, Sample 5	15-17	0.6					
Boring SW-6									
* SW6-S1	11/6/2017	Boring SW-6, Sample 1	0-2	21					
SW6-S2	11/6/2017	Boring SW-6, Sample 2	2.5-4.5	3.4					
SW6-S3	11/6/2017	Boring SW-6, Sample 3	5-7	2.7					
* SW6-S4	11/6/2017	Boring SW-6, Sample 4	7.5-9.5	720					
SW6-S5	11/6/2017	Boring SW-6, Sample 5	10-12	460					
SW6-S6	11/6/2017	Boring SW-6, Sample 6	15-17	6.5					
SW6-S7	11/6/2017	Boring SW-6, Sample 7	20-22	56					
SW6-S8	11/6/2017	Boring SW-6, Sample 8	25-27	2.9					
SW6-S9	11/6/2017	Boring SW-6, Sample 9	30-32	1.5					
SW6-S10	11/6/2017	Boring SW-6, Sample 10	35-37	2.2					
Water Samples									
* SW-2	5/17/2017	Monitoring Well SW-2	1.5	-					
* SW-3	5/17/2017	Monitoring Well SW-3	1.4	-					
* SW-30	5/17/2017	Duplicate of Sample SW-3	1.4	-					
Quality Control S	Samples								
* STB1	5/17/2017	Soil Trip Blank	-	-					
* WTB1	5/17/2017	Water Trip Blank	-	-					

TABLE C-1 SAMPLE LOCATIONS AND DESCRIPTIONS

Notes:

* = Sample analyzed by the project laboratory (See Tables C-3 and C-4)

^ = Field screening instrument was a Thermo Environmental Instruments

580B photoionization detector (PID).

- = Measurement not recorded or not applicable

bgs = below ground surface

ppm = parts per million

TABLE C-2 MONITORING WELL DEVELOPMENT AND SAMPLING LOG

	Monitoring Well Number				
	SW-2	SW-3			
Water Level Measurement Data					
Date Water Level Measured	11/17/2017	11/17/2017			
Time Water Level Measured	15:32	11:32			
Measured Depth to Water (ft below ground surface)^	1.45	1.37			
Measured Depth to Water (ft below TOC)^	1.15	0.86			
Development Data					
Development Date	11/17/2017	11/17/2017			
Total Depth of Well (ft below TOC)	11.90	11.60			
Water Column in Well (ft)	10.75	10.74			
Gallons per Foot	0.16	0.16			
Water Column Volume (gallons)	1.72	1.72			
Total Volume Pumped (gallons)	52 (see remarks)	55			
Development Method	Surge block/ Submersible pump	Surge block/ Submersible pump			
Sampling Data					
Date Sampled	11/20/2017	11/17/2017			
Time Sampled	13:07	14:17			
Sampling Method	Submersible pump	Submersible pump			
Diameter of Well Casing	2-inch	2-inch			
Water Quality Data					
Date Measured	11/20/2017	11/17/2017			
Temperature (°C)	1.1	0.5			
pH (Standard Units)	6.99	7.23			
Specific Conductivity (µS/cm)	20	16			
Turbidity (NTU)	229	847			
Remarks	7 gallons were removed during				
	initial development on				
	11/17/2017. Development				
	completed on 11/20/2017.				

Notes:

Water quality parameters were measured with Hanna and Hach Instruments

^ = Depth to water measured prior to development

TOC = Top of casing

ft = Feet

°C = Degrees Celsius

 $\mu S/cm = Microsiemens \ per \ Centimeter$

NTU = Nephelometric Turbidity Unit

TABLE C-3							
SUMMARY OF SOIL ANALYTICAL RESULTS							

			Boring ID, Sample Source, ID Number^, and Collection Depth in Feet bgs					
				Boring SW-1	Boring SW-2			
			SW1-S1		SW1-S20~			
Parameter Tested	M.41.4*			SW1-S2 2.5-3.2		SW2-S1	SW2-S3	
	Method*	Cleanup Level**	0-2		2.5-3.2	0-2	5-7	
Headspace Reading - ppm	OVM 580B	-	210	230	230	79	250	
Gasoline Range Organics (GRO) - mg/kg	AK 101	1,400 ^(a)	47.4	91.2 J+	61.8 J+	140 J+	280 J+	
Diesel Range Organics (DRO) - mg/kg	AK 102	10,250 ^(a)	332	416	411	161 J	502	
Residual Range Organics (RRO) - mg/kg	AK 103	10,000 ^(a)	4,260	586	574	2,490	158	
Volatile Organic Compounds (VOCs)		- 7	,			,		
Benzene - mg/kg	EPA 8260C	11 ^(a)	3.51	2.21	2.03	0.567	0.851	
Toluene - mg/kg	EPA 8260C	200 ^(a)	0.110	0.345	0.233	0.306	0.276	
Ethylbenzene - mg/kg	EPA 8260C	49 ^(a)	0.492	1.38	1.23	0.741	0.654	
Xylenes (total) - mg/kg	EPA 8260C	57 ^(a)	0.924	7.36	7.17	4.21	1.86	
1,2,4-Trimethylbenzene - mg/kg	EPA 8260C	0.16	-	-	-	-	2.73 J+	
1,3,5-Trimethylbenzene - mg/kg	EPA 8260C	1.3	-	-	-	-	0.601 J+	
4-Isopropyltoluene - mg/kg	EPA 8260C	_	-	-	-	-	0.478 J+	
Chloromethane - mg/kg	EPA 8260C	0.61	-	-	-	-	< 0.0105	
Dichlorodiflouromethane - mg/kg	EPA 8260C	3.9	-	-	-	-	0.0187 J	
Isopropylbenzene - mg/kg	EPA 8260C	5.6	_	-	_	-	0.536	
Naphthalene - mg/kg	EPA 8260C	0.038	-	-	-	-	0.583 J+	
n-Propylbenzene - mg/kg	EPA 8260C	9.1	-	-	-	-	0.949 J+	
sec-Butylbenzene - mg/kg	EPA 8260C	28	-	-	-	-	0.409 J+	
tert-Butylbenzene - mg/kg	EPA 8260C	11	-	-	-	-	0.0227 J+	
Tetrachloroethene - mg/kg	EPA 8260C	0.19	-	-	-	-	< 0.00525	
Other VOCs - mg/kg	EPA 8260C	varies	-	-	-	-	ND	
TCLP Benzene - mg/L	EPA 1311/8260	0.5 ^(b)	-	-	-	-	0.0470	
Polynuclear Aromatic Hydrocarbons (PAHs)								
1-Methylnaphthalene - mg/kg	8270D SIM	0.41	-	-	_	_	1.86	
2-Methylnaphthalene - mg/kg	8270D SIM	1.3	-	-	-	-	2.64	
Acenaphthene - mg/kg	8270D SIM	37	-	-	-	_	0.134	
Acenaphthylene - mg/kg	8270D SIM	18					< 0.0141	
Anthracene - mg/kg	8270D SIM	390	-	-	-	_	0.0842	
Benzo(a)Anthracene - mg/kg	8270D SIM	0.28	-	-	-	_	0.261	
Benzo[a]pyrene - mg/kg	8270D SIM	0.2	-	-	-	_	0.185	
Benzo[b]Fluoranthene	8270D SIM	2	-	-	-	_	0.308	
Benzo[g,h,i]perylene - mg/kg	8270D SIM	2,300	-	-	-	-	0.0693	
Benzo[k]fluoranthene	8270D SIM	27	-	-	-	_	0.0900	
Chrysene - mg/kg	8270D SIM	82	-	-	-	-	0.212	
Dibenzo[a,h]anthracene	8270D SIM	0.2	-	-	-	-	0.0233 J	
Fluoranthene - mg/kg	8270D SIM	590	-	-	-	-	0.703	
Fluorene - mg/kg	8270D SIM	36	-	-	-	-	0.105	
Indeno[1,2,3-c,d] pyrene	8270D SIM	2	-	-	-	-	0.0736	
Naphthalene - mg/kg	8270D SIM	0.038	-	-	-	-	1.09	
Phenanthrene - mg/kg	8270D SIM	39	-	-	-	-	0.357	
Pyrene - mg/kg	8270D SIM	87	-	-	-	-	0.689	
Total Lead - mg/kg	EPA 6020A	400	_	-	_	_	15.1	

Notes:	
*	= See Attachement C-3 for co
**	= Soil cleanup level is the mo
	B1 or B2 18 Alaska Admin
	(precipitation) zone" (Octob
(a)	= Soil cleanup level based on
	B1 or B2, 18 AAC 75.
(b)	= TCLP benzene regulatory le
^	= sample ID No. preceded by
1.86	= reported concentration exce
47.4	= analyte detected
47.4 <0.0105	= analyte detected= analyte not detected; labora
< 0.0105	= analyte not detected; labora
<0.0105 mg/L	= analyte not detected; labora = milligrams per liter
<0.0105 mg/L ppm	= analyte not detected; labora= milligrams per liter= parts per million
<0.0105 mg/L ppm mg/kg	 = analyte not detected; labora = milligrams per liter = parts per million = milligrams per kilogram
<0.0105 mg/L ppm mg/kg	 = analyte not detected; labora = milligrams per liter = parts per million = milligrams per kilogram = below ground surface
<0.0105 mg/L ppm mg/kg bgs	 = analyte not detected; labora = milligrams per liter = parts per million = milligrams per kilogram = below ground surface = not applicable or sample not
<0.0105 mg/L ppm mg/kg bgs - ND	 analyte not detected; labora milligrams per liter parts per million milligrams per kilogram below ground surface not applicable or sample not not detected
<0.0105 mg/L ppm mg/kg bgs - ND	 analyte not detected; labora milligrams per liter parts per million milligrams per kilogram below ground surface not applicable or sample not not detected quantitation is an estimate 1

compounds tested, methods, and laboratory reporting limits nost stringent ADEC Method Two standard listed in Table

inistrative Code (AAC) 75, for the "under 40 inches ober 2017).

on the most stringent Human Health cleanup level in Table

v level is presented in 40 CFR 261.24 by "20034-" on the chain of custody form. ceeds the ADEC cleanup level

ratory limit of detection of 0.0105 mg/kg

not tested for this analyte

e less than the limit of quantitation (LOQ). See the SGS ils.

= Analytical result is potentially biased high due to surrogate failure. See ADEC Laboratory Data Review Checklist (LDRC) in Attachment C-3 for details.

TABLE C-3SUMMARY OF SOIL ANALYTICAL RESULTS

			Boring	g ID, Sample S			llection		
					epth in Feet b		CITY A		
			GW/2 C1	Boring SW-3			g SW-4		
Parameter Tested	Method*	Cleanup Level**	SW3-S1 0-2	SW3-S2 2.5-4.5	SW3-S20~ 2.5-4.5	SW4-S1 0-2	SW4-S3 5-7		
Headspace Reading - ppm	OVM 580B	-	170	340	340	0.5	6.2		
Gasoline Range Organics (GRO) - mg/kg	AK 101	$1,400^{(a)}$	<1.13	250 J+	335 J+	<1.21	<1.12		
Diesel Range Organics (DRO) - mg/kg	AK 102	10,250 ^(a)	59.0 J	1,690	2,320	41.4 J	330		
Residual Range Organics (RRO) - mg/kg	AK 102 AK 103	10,230 10,000 ^(a)	33.0 J 486	797	2,320 1,090	178	330 487		
	AK 105	10,000	400	191	1,090	170	407		
Volatile Organic Compounds (VOCs) Benzene - mg/kg	EPA 8260C	11 ^(a)	0.0945	0.776 E	3.4 E	0.00849 J	0.0580		
Toluene - mg/kg	EPA 8260C	200 ^(a)	<0.0113	0.770 E 11.3 E	3.4 E 23.4 E	<0.0121	0.0330 0.0103 J		
Ethylbenzene - mg/kg	EPA 8260C	49 ^(a)	< 0.0113	3.35	23.4 E 5.51	<0.0121	<0.0103 J		
Xylenes (total) - mg/kg	EPA 8260C EPA 8260C	57 ^(a)	< 0.0113	3.35	5.51 44.1	<0.0121	<0.0112 0.0289 J		
1,2,4-Trimethylbenzene - mg/kg	EPA 8260C EPA 8260C	0.16	<0.0559	50 6.84 J+	44.1	<0.0304	0.0289 J		
1,2,4-Trimethylbenzene - mg/kg	EPA 8260C EPA 8260C	1.3	-	6.84 J+ 2.08 J+	-	-	-		
4-Isopropyltoluene - mg/kg	EPA 8260C EPA 8260C	1.5	-	2.08 J+ 0.271 J+	-	-	-		
	EPA 8260C EPA 8260C	0.61	-		-	-	-		
Chloromethane - mg/kg			-	0.0448	-	-	-		
Dichlorodiflouromethane - mg/kg	EPA 8260C	3.9	-	0.0162 J	-	-	-		
Isopropylbenzene - mg/kg	EPA 8260C	5.6	-	0.432	-	-	-	Nataa	
Naphthalene - mg/kg	EPA 8260C	0.038	-	1.9 J +	-	-	-	Notes:	= See Attachement C-3 for
n-Propylbenzene - mg/kg	EPA 8260C	9.1	-	0.706 J+	-	-	-	**	
sec-Butylbenzene - mg/kg	EPA 8260C	28 11	-	0.210 J+	-	-	-	-1-1-	= Soil cleanup level is the 10^{-10}
tert-Butylbenzene - mg/kg	EPA 8260C		-	0.0182 J+	-	-	-		B1 or B2 18 Alaska Adn
Tetrachloroethene - mg/kg	EPA 8260C	0.19	-	0.11 ND	-	-	-		(precipitation) zone" (Oct
Other VOCs - mg/kg	EPA 8260C EPA 1311/8260	varies $0.5^{(b)}$	-		-	-	-	(a)	= Soil cleanup level based $P_1 \approx P_2$ 18 AAC 75
TCLP Benzene - mg/L	EPA 1311/8200	0.5	-	0.0355	-	-	-		B1 or B2, 18 AAC 75.
Polynuclear Aromatic Hydrocarbons (PAHs)								(b)	= TCLP benzene regulator
1-Methylnaphthalene - mg/kg	8270D SIM	0.41	-	2.25 J-	-	-	-	٨	= sample ID No. preceded
2-Methylnaphthalene - mg/kg	8270D SIM	1.3	-	3 J-	-	-	-	6.84	= reported concentration ex
Acenaphthene - mg/kg	8270D SIM	37	-	0.301 J-	-	-	-	486	= analyte detected
Acenaphthylene - mg/kg	8270D SIM	18		<0.142 J-				<1.13	= analyte not detected; lab
Anthracene - mg/kg	8270D SIM	390	-	0.128 J-	-	-	-	E	= Result is an estimate due to
Benzo(a)Anthracene - mg/kg	8270D SIM	0.28	-	0.203 J-	-	-	-	_	(RPD) failure. See ADEC L
Benzo[a]pyrene - mg/kg	8270D SIM	0.2	-	0.108 J-	-	-	-	mg/L	= milligrams per liter
Benzo[b]Fluoranthene	8270D SIM	2	-	0.193 J-	-	-	-	ppm	= parts per million
Benzo[g,h,i]perylene - mg/kg	8270D SIM	2,300	-	<0.142 J-	-	-	-	mg/kg	= milligrams per kilogram
Benzo[k]fluoranthene	8270D SIM	27	-	<0.142 J-	-	-	-	bgs	= below ground surface
Chrysene - mg/kg	8270D SIM	82	-	0.232 J-	-	-	-	-	= not applicable or sample
Dibenzo[a,h]anthracene	8270D SIM	0.2	-	<0.142 J-	-	-	-	ND	= not detected
Fluoranthene - mg/kg	8270D SIM	590	-	0.829 J-	-	-	-	J	= quantitation is an estimat
Fluorene - mg/kg	8270D SIM	36	-	0.293 J-	-	-	-		laboratory report for deta
Indeno[1,2,3-c,d] pyrene	8270D SIM	2	-	<0.142 J-	-	-	-	J+	= Analytical result is poten
Naphthalene - mg/kg	8270D SIM	0.038	-	1.42 J-	-	-	-		Laboratory Data Review
Phenanthrene - mg/kg	8270D SIM	39	-	0.690 J-	-	-	-	J-	= Analytical result is poten
Pyrene - mg/kg	8270D SIM	87	-	0.642 J-	-	-	-		Laboratory Data Review
Total Lead - mg/kg	EPA 6020A	400	-	17.1	-	-	-		

Attachement C-3 for compounds tested, methods, and laboratory reporting limits cleanup level is the most stringent ADEC Method Two standard listed in Table or B2 18 Alaska Administrative Code (AAC) 75, for the "under 40 inches cipitation) zone" (October 2017).

cleanup level based on the most stringent Human Health cleanup level in Table

LP benzene regulatory level is presented in 40 CFR 261.24 ple ID No. preceded by "20034-" on the chain of custody form. orted concentration exceeds the ADEC cleanup level

yte not detected; laboratory limit of detection of 1.13 mg/kg lt is an estimate due to a primary/field duplicate sample pair relative percent difference D) failure. See ADEC LDRC in Appendix D for details.

applicable or sample not tested for this analyte

ntitation is an estimate less than the limit of quantitation (LOQ). See the SGS ratory report for details.

lytical result is potentially biased high due to surrogate failure. See ADEC

oratory Data Review Checklist (LDRC) in Attachment C-3 for details.

lytical result is potentially biased low due to surrogate failure. See ADEC

bratory Data Review Checklist (LDRC) in Attachment C-3 for details.

TABLE C-3 SUMMARY OF SOIL ANALYTICAL RESULTS

			Boring ID, Sample Source, ID Number^, and Collection					
			Depth in Feet bgsBoring SW-5Boring SW-6Trip Blank					
			SW5-S1 SW5-S3		SW6-S1 SW6-S4		Trip Blank STB	
Parameter Tested	Method*	Cleanup Level**	0-2	5-7	0-2	7.5-9.5	-	
Headspace Reading - ppm	OVM 580B	-	1.5	2.2	21	720	_	
		- 1 400 ^(a)					-1.25	
Gasoline Range Organics (GRO) - mg/kg	AK 101	1,400 ^(a)	< 0.960	2.66	< 0.945	34.9 J+	<1.25	
Diesel Range Organics (DRO) - mg/kg	AK 102	10,250 ^(a)	85.8 J	345	29.9	353	-	
Residual Range Organics (RRO) - mg/kg	AK 103	10,000 ^(a)	1,380	29.2	85.8	<12.7	-	
Volatile Organic Compounds (VOCs)								
Benzene - mg/kg	EPA 8260C	11 ^(a)	< 0.00480	0.00451 J	< 0.00472	< 0.0115	< 0.00630	
Toluene - mg/kg	EPA 8260C	200 ^(a)	< 0.00960	< 0.0133	< 0.00945	0.0542	< 0.0126	
Ethylbenzene - mg/kg	EPA 8260C	49 ^(a)	< 0.00960	< 0.0133	0.0251	0.0391 J	< 0.0126	
Xylenes (total) - mg/kg	EPA 8260C	57 ^(a)	< 0.0288	0.0212 J	0.0351	1.14	< 0.0376	
1,2,4-Trimethylbenzene - mg/kg	EPA 8260C	0.16	-	-	-	-	< 0.0251	
1,3,5-Trimethylbenzene - mg/kg	EPA 8260C	1.3	-	-	-	-	< 0.0126	
4-Isopropyltoluene - mg/kg	EPA 8260C	-	-	-	-	-	< 0.0126	
Chloromethane - mg/kg	EPA 8260C	0.61	-	-	-	-	< 0.0126	
Dichlorodiflouromethane - mg/kg	EPA 8260C	3.9	-	-	-	-	< 0.0251	
Isopropylbenzene - mg/kg	EPA 8260C	5.6	-	-	-	-	< 0.0126	
Naphthalene - mg/kg	EPA 8260C	0.038	-	-	-	-	< 0.0126	
n-Propylbenzene - mg/kg	EPA 8260C	9.1	-	-	-	-	< 0.0126	
sec-Butylbenzene - mg/kg	EPA 8260C	28	-	-	-	-	< 0.0126	
tert-Butylbenzene - mg/kg	EPA 8260C	11	-	-	-	-	< 0.0126	
Tetrachloroethene - mg/kg	EPA 8260C	0.19	-	-	-	-	< 0.00630	
Other VOCs - mg/kg	EPA 8260C	varies	-	-	-	-	ND	
TCLP Benzene - mg/L	EPA 1311/8260	0.5 ^(b)	-	-	-	-	-	
Polynuclear Aromatic Hydrocarbons (PAHs)								
1-Methylnaphthalene - mg/kg	8270D SIM	0.41	_	-	_	-	-	
2-Methylnaphthalene - mg/kg	8270D SIM	1.3	_	-	_	-	-	
Acenaphthene - mg/kg	8270D SIM	37	_	_	_	_	-	
Acenaphthylene - mg/kg	8270D SIM	18						
Anthracene - mg/kg	8270D SIM	390	_	-	_	-	-	
Benzo(a)Anthracene - mg/kg	8270D SIM	0.28	_	-	_	-	-	
Benzo[a]pyrene - mg/kg	8270D SIM	0.2	_	_	_	_	-	
Benzo[b]Fluoranthene	8270D SIM	2	_	_	_	_	-	
Benzo[g,h,i]perylene - mg/kg	8270D SIM	2,300	_	_	_	_	_	
Benzo[k]fluoranthene	8270D SIM	2,300	_	_	_	_	_	
Chrysene - mg/kg	8270D SIM 8270D SIM	82	_	_	_	_	_	
Dibenzo[a,h]anthracene	8270D SIM	0.2	_	_	_	_		
Fluoranthene - mg/kg	8270D SIM 8270D SIM	590	-	-	_	_	_	
Fluorene - mg/kg	8270D SIM 8270D SIM	36	-	_	_	_	-	
Indeno[1,2,3-c,d] pyrene	8270D SIM 8270D SIM	2	-	-	_	_	_	
Naphthalene - mg/kg	8270D SIM 8270D SIM	0.038	_	_	_	_	_	
Phenanthrene - mg/kg	8270D SIM 8270D SIM	39	-	_	_	_	-	
Pyrene - mg/kg	8270D SIM 8270D SIM	87	-	_	_	_	_	
			-	_	_	_		
Total Lead - mg/kg	EPA 6020A	400	-	-	-	-	-	

= See Attachement C-3 for compounds tested, methods, and laboratory reporting limits = Soil cleanup level is the most stringent ADEC Method Two standard listed in Table B1 or B2 18 Alaska Administrative Code (AAC) 75, for the "under 40 inches

= Soil cleanup level based on the most stringent Human Health cleanup level in Table

= TCLP benzene regulatory level is presented in 40 CFR 261.24 = sample ID No. preceded by "20034-" on the chain of custody form.

= quantitation is an estimate less than the limit of quantitation (LOQ). See the SGS

= Analytical result is potentially biased high due to surrogate failure. See ADEC Laboratory Data Review Checklist (LDRC) in Attachment C-3 for details.

			Sample ID N	Number^ and	Water Dept	h in Feet bgs		
		Groundwater	М	onitoring We	ells	Trip Blank		
		Cleanup	SW-2	SW-3	SW-30~	WTB		
Parameter Tested	Method*	Level**	1.5	1.4	1.4	-		
Gasoline Range Organics (GRO) -µg/L	AK 101	2,200	1,870	22,300 E	10,400 E	<50.0		
Diesel Range Organics (DRO) - µg/L	AK 102	1,500	2,660	4,030	3,570	-		
Residual Range Organics (RRO) - µg/L	AK 103	1,100	789	541	590	-		
Volatile Organic Compounds (VOCs)								
Benzene - µg/L	EPA 8260C	4.6	550	2,700	2,370	< 0.200		
Toluene - $\mu g/L$	EPA 8260C	1,100	59.8	4,240	4,300	< 0.500		
Ethylbenzene - µg/L	EPA 8260C	15	157	695 E	329 E	< 0.500		
Xylenes (total) - $\mu g/L$	EPA 8260C	190	409	4,880 E	2,567 E	<1.50		
$1,2,4$ -Trimethylbenzene - μ g/L	EPA 8260C	15	180	-	-	<0.500		
1,2-Dichloroethane - μ g/L	EPA 8260C	1.7	1.97	-	-	< 0.250		
1,3,5-Trimethylbenzene - μ g/L	EPA 8260C	120	50.2	-	-	< 0.500		
4-Isopropyltoluene - $\mu g/L$	EPA 8260C	-	8.79	-	-	< 0.500		
Isopropylbenzene (Cumene) - µg/L	EPA 8260C	450	44.3	_	-	< 0.500		
Bromoform - $\mu g/L$	EPA 8260C	33	< 0.500	_	-	0.800 J		
Chloroethane - $\mu g/L$	EPA 8260C	-	2.91	_	-	< 0.500		
Dibromochloromethane - mg/L	EPA 8260C	8.7	<0.250	_	_	0.760		
Dichlorodifluoromethane - mg/L	EPA 8260C	200	22.3	_	-	<0.500		
Naphthalene - $\mu g/L$	EPA 8260C	1.7	44.7	-	-	<0.500 <0.500		
n-Propylbenzene - $\mu g/L$	EPA 8260C EPA 8260C	660	43.9	-	-	<0.500 <0.500		
sec-Butylbenzene - $\mu g/L$	EPA 8260C EPA 8260C	2,000	43.9 7.37	-	-	<0.300 <0.500		
tert-Butylbenzene - $\mu g/L$	EPA 8260C EPA 8260C	690	0.690 J	-	-	<0.300 <0.500		
Trichlorofluoromethane - mg/L	EPA 8200C EPA 8260C	5,200	3.28	-	-	<0.300 <0.500		
Other VOCs - $\mu g/L$	EPA 8260C EPA 8260C	varies	3.20 ND	-	-	<0.500 ND	Notes:	
	EFA 8200C	varies	ND	-	-	ND		~ ~ ~
Polynuclear Aromatic Hydrocarbons (PAHs)							*	= See Attachment C-3 for compo
1-Methylnaphthalene - µg/L	EPA 8270D	11	12.7	-	-	-	**	= Groundwater cleanup levels ar
2-Methylnaphthalene - µg/L	EPA 8270D	36	15.7	-	-	-	^	= sample ID No. preceded by "2
Acenaphthene - $\mu g/L$	EPA 8270D	530	1.10	-	-	-	^^	= TAH concentration is the sum
Acenaphthylene - µg/L	EPA 8270D	260	< 0.0257	-	-	-		concentrations.
Anthracene - µg/L	EPA 8270D	43	0.129	-	-	-	~~~	= TAqH concentration is the sun
Benzo(a)Anthracene - $\mu g/L$	EPA 8270D	0.12	0.0438 J	-	-	-	μg/L	= micrograms per liter
Benzo[a]pyrene - µg/L	EPA 8270D	0.034	0.0183 J	-	-	-	1,870	= analyte detected
Benzo[b]Fluoranthene - μ g/L	EPA 8270D	0.34	0.0295 J	-	-	-	550	= reported concentration exceeds
Benzo[g,h,i]perylene - µg/L	EPA 8270D	0.26	< 0.0257	-	-	-	< 0.500	= analyte not detected; laborator
Benzo[k]fluoranthene - µg/L	EPA 8270D	0.8	< 0.0257	-	-	-	bgs	= below ground surface
Chrysene - µg/L	EPA 8270D	2.0	0.0397 J	-	-	-	-	= not applicable
Dibenzo[a,h]anthracene - µg/L	EPA 8270D	0.034	< 0.0103	-	-	-	~	= duplicate of preceding sample
Fluoranthene - µg/L	EPA 8270D	260	0.346	-	-	-	J	= quantitation is an estimate less
Fluorene - µg/L	EPA 8270D	290	0.617	-	-	-	J+	= Analytical result is potentially
Indeno[1,2,3-c,d] pyrene - µg/L	EPA 8270D	0.19	< 0.0257	-	-	-	J-	= Analytical result is potentially
Naphthalene - µg/L	EPA 8270D	1.7	26.1	-	-	-	ND	= analyte not detected
Phenanthrene - µg/L	EPA 8270D	170	0.824	-	-	-	Е	= Result is an estimate due to a p
Pyrene - $\mu g/L$	EPA 8270D	120	0.286	-	-	-		failure. See ADEC LDRC in A
Total Aromatic Hydrocarbons (TAH)^^ - µg/L	calculated	10	1,180	-	-	<2.95		
Total Aqueous Hydrocarbons (TAqH)^^^ - µg/L	calculated	15	1,238	-	-			

TABLE C-4 - SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Attachment C-3 for compounds tested, methods, and laboratory reporting limits bundwater cleanup levels are listed in Table C, 18 AAC 75.345 (October 2017) nple ID No. preceded by "20034" on the chain of custody form H concentration is the sum of benzene, toluene, ethylbenze, and xylene concentrations.

qH concentration is the sum of TAH and PAH compounds.

orted concentration exceeds the ADEC Table C cleanup level lyte not detected; laboratory limit of detection $0.500 \ \mu g/L$

ntitation is an estimate less than the limit of quantitation (LOQ). See the SGS laboratory report for details. Ilytical result is potentially biased high due to surrogate failure. See ADEC LDRC in Attachment C-3 for details. Ilytical result is potentially biased low due to surrogate failure. See ADEC LDRC in Attachment C-3 for details.

sult is an estimate due to a primary/field duplicate sample pair relative percent difference (RPD) ure. See ADEC LDRC in Attachment C-3 for details.